Tyrosine Kinases and Cellular Signaling in Prostate Cancer

  • Hsing-Jien Kung
  • Clifford G. Tepper
  • Ralph W. deVere White
Part of the Contemporary Cancer Research book series (CCR)


There is very strong evidence that tyrosine kinases are involved in the growth and metastasis of prostate cancer (65,152,165). Tyrosine kinases also play key roles in modulating tumor sensitivity to radiation- and chemical-induced apoptosis. Thus, there is hope that they may play an important role in the response of metastatic prostate cancer to hormonal intervention as well as to other chemotherapeutic approaches (78). Their potential importance as targets for intervention is indicated by the FDA approval of the HER2/Neu-directed therapy, Herceptin, for breast cancer therapy and current clinical trials investigating its effectiveness for prostate cancer (140). Presently, because of screening, 80% of prostate cancers are found while still localized to the gland. If we had the ability to determine which cancers would not metastasize, treatment could be given on an individual basis. Presently, prostate specific antigen (PSA) and tumor grade are the best markers we have. While being generally good clinical indicators, they lack specificity for the individual patient. There are a number of indications that tyrosine kinases may be valuable as prognostic markers in these situations (65,152,165).


Prostate Cancer Tyrosine Kinase Androgen Receptor Prostate Cancer Cell LNCaP Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abreu-Martin, M. T., A. Chari, A. A. Palladino, N. A. Craft, and C. L. Sawyers. 1999. Mitogen-activated protein kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell Biol. 19: 5143–5154.PubMedGoogle Scholar
  2. 2.
    Adam, L., R. Vadlamudi, S. B. Kondapaka, J. Chernoff, J. Mendelsohn, and R. Kumar. 1998. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J. Biol. Chem. 273: 28,238–28, 246.Google Scholar
  3. 3.
    Adler, H. L., M. A. McCurdy, M. W. Kattan, T. L. Timme, P. T. Scardino, and T. C. Thompson. 1999. Elevated levels of circulating interleukin-6 and transforming growth factor-betal in patients with metastatic prostatic carcinoma. J. Urol. 161: 182–187.PubMedCrossRefGoogle Scholar
  4. 4.
    Akimoto, S., A. Okumura, and H. Fuse. 1998. Relationship between serum levels of interleukin-6, tumor necrosis factor-alpha and bone turnover markers in prostate cancer patients. Endocr. J. 45: 183–189.PubMedCrossRefGoogle Scholar
  5. 5.
    Andreotti, A. H., S. C. Bunnell, S. Feng, L. J. Berg, and S. L. Schreiber. 1997. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 385: 93–97.PubMedCrossRefGoogle Scholar
  6. 5a.
    Arai, Y., T. Yoshiki, and O. Yoshida. 1997. c-erb13–2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 30: 195–201.Google Scholar
  7. 6.
    Angelsen, A., A. K. Sandvik, U. Syversen, M. Stridsberg, and H. L. Waldum. 1998. NGFbeta, NE-cells and prostatic cancer cell lines. A study of neuroendocrine expression in the human prostatic cancer cell lines DU-145, PC-3, LNCaP, and TSU-prl following stimulation of the nerve growth factor-beta. Scand. J. Urol. Nephrol. 32: 7–13.PubMedCrossRefGoogle Scholar
  8. 7.
    Bacus, S. S., Y. Yarden, M. Oren, D. M. Chin, L. Lyass, C. R. Zelnick, et al. 1996. Neu differentiation factor (Heregulin) activates a p53-dependent pathway in cancer cells. Oncogene 12: 2535–2547.PubMedGoogle Scholar
  9. 8.
    Bang, Y. J., F. Pirnia, W. G. Fang, W. K. Kang, O. Sartor, L. Whitesell, et al. 1994. Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc. Natl. Acad. Sci. USA 91: 5330–5334.PubMedCrossRefGoogle Scholar
  10. 9.
    Borsellino, N., A. Belldegrun, and B. Bonavida. 1995. Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 55: 4633–4639.PubMedGoogle Scholar
  11. 10.
    Borsellino, N., A. Belldegrun, and B. Bonavida. 1995. Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 55: 4633–4639.PubMedGoogle Scholar
  12. 11.
    Borsellino, N., B. Bonavida, G. Ciliberto, C. Toniatti, S. Travali, and N. D’Alessandro. 1999. Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatinmediated cytotoxicity. Cancer 85: 134–144.PubMedCrossRefGoogle Scholar
  13. 12.
    Bos, M., J. Mendelsohn, Y. M. Kim, J. Albanell, D. W. Fry, and J. Baselga. 1997. PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin. Cancer Res. 3: 2099–2106.PubMedGoogle Scholar
  14. 13.
    Bubendorf, L., J. Kononen, P. Koivisto, P. Schraml, H. Moch, T. C. Gasser, et al. 1999. Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays (published erratum appears in Cancer Res. 1999 Mar. 15;59(6):1388). Cancer Res. 59: 803–806.PubMedGoogle Scholar
  15. 14.
    Burden, S. and Y. Yarden. 1997. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18: 847–855.PubMedCrossRefGoogle Scholar
  16. 15.
    Cardone, M. H., N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke, E. Stanbridge, et al. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318–1321.PubMedCrossRefGoogle Scholar
  17. 16.
    Carson, J. P., G. Kulik, and M. J. Weber. 1999. Antiapoptotic signaling in LNCaP prostate cancer cells: a survival signaling pathway independent of phosphatidylinositol 3’-kinase and Akt/protein kinase B. Cancer Res. 59: 1449–1453.PubMedGoogle Scholar
  18. 17.
    Carstens, R. P., J. V. Eaton, H. R. Krigman, P. J. Walther, and M. A. Garcia-Blanco. 1997. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15: 3059–3065.PubMedCrossRefGoogle Scholar
  19. 18.
    Chen, T., R. W. Cho, P. J. Stork, and M. J. Weber. 1999a. Elevation of cyclic adenosine 3’,5’-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 59: 213–218.PubMedGoogle Scholar
  20. 19.
    Chen, T., R. W. Cho, P. J. Stork, and M. J. Weber. 1999b. Elevation of cyclic adenosine 3’,5’-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 59: 213–218.PubMedGoogle Scholar
  21. 20.
    Chen, Y., L. A. Martinez, M. LaCava, L. Coghlan, and C. J. Conti. 1998. Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D 1. Oncogene 16: 1913–1920.PubMedCrossRefGoogle Scholar
  22. 21.
    Chung, T. D., J. J. Yu, M. T. Spiotto, M. Bartkowski, and J. W. Simons. 1999. Characterization of the role of IL-6 in the progression of prostate cancer. Prostate 38: 199–207.PubMedCrossRefGoogle Scholar
  23. 22.
    Cohen, R. J., G. Glezerson, and Z. Haffejee. 1991. Neuro-endocrine cells-a new prognostic parameter in prostate cancer. Br. J. Urol. 68: 258–262.PubMedCrossRefGoogle Scholar
  24. 23.
    Connolly, J. M. and D. P. Rose. 1990. Production of epidermal growth factor and transforming growth factor-alpha by the androgen-responsive LNCaP human prostate cancer cell line. Prostate 16: 209–218.PubMedCrossRefGoogle Scholar
  25. 24.
    Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, et al. 1995. The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137–1146.PubMedCrossRefGoogle Scholar
  26. 25.
    Coussens, L., T. L. Yang-Feng, Y. C. Liao, E. Chen, A. Gray, J. McGrath, et al. 1985. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139.PubMedCrossRefGoogle Scholar
  27. 26.
    Cox, M. E., P. D. Deeble, S. Lakhani, and S. J. Parsons. 1999. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res. 59: 3821–3830.PubMedGoogle Scholar
  28. 27.
    Craft, N., Y. Shostak, M. Carey, and C. L. Sawyers. 1999. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase (see comments). Nat. Med. 5: 280–285.PubMedCrossRefGoogle Scholar
  29. 28.
    Culig, Z., A. Hobisch, M. V. Cronauer, C. Radmayr, J. Trapman, A. Hittmair, et al. 1994. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54: 5474–5478.PubMedGoogle Scholar
  30. 29.
    Daly, J. M., M. A. Olayioye, A. M. Wong, R. Neve, H. A. Lane, F. G. Maurer, et al. 1999. NDF/heregulin-induced cell cycle changes and apoptosis in breast tumour cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene 18: 3440–3451.PubMedCrossRefGoogle Scholar
  31. 30.
    Daniels, R. H., P. S. Hall, and G. M. Bokoch. 1998. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17: 754–764.PubMedCrossRefGoogle Scholar
  32. 31.
    Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, et al. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.PubMedCrossRefGoogle Scholar
  33. 32.
    Davis, R. J. 1995. Transcriptional regulation by MAP kinases. Mol. Reprod. Dey. 42: 459–467.CrossRefGoogle Scholar
  34. 33.
    Davol, P. A. and A. R. J. Frackelton. 1999. Targeting human prostatic carcinoma through basic fibroblast growth factor receptors in an animal model: characterizing and circumventing mechanisms of tumor resistance. Prostate 40: 178–191.PubMedCrossRefGoogle Scholar
  35. 34.
    Dawson, D. M., E. G. Lawrence, G. T. MacLennan, S. B. Amini, H. J. Kung, D. Robinson, et al. 1998. Altered expression of RET proto-oncogene product in prostatic intraepithelial neoplasia and prostate cancer (see comments). J. Natl. Cancer Inst. 90: 519–523.PubMedCrossRefGoogle Scholar
  36. 35.
    De Bellis, A., C. Crescioli, C. Grappone, S. Milani, P. Ghiandi, G. Forti, et al. 1998. Expression and cellular localization of keratinocyte growth factor and its receptor in human hyperplastic prostate tissue. J. Clin. Endocrinol. Metab. 83: 2186–2191.PubMedCrossRefGoogle Scholar
  37. 36.
    Degeorges, A., R. Tatoud, F. Fauvel-Lafeve, M. P. Podgorniak, G. Millot, P. de Cremoux, et al. 1996. Stromal cells from human benign prostate hyperplasia produce a growth-inhibitory factor for LNCaP prostate cancer cells, identified as interleukin-6. Int. J. Cancer 68: 207–214.PubMedCrossRefGoogle Scholar
  38. 37.
    del Peso, L., M. Gonzalez-Garcia, C. Page, R. Herrera, and G. Nunez. 1997. Interleukin3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689.PubMedCrossRefGoogle Scholar
  39. 38.
    Delsite, R. and D. Djakiew. 1996. Anti-proliferative effect of the kinase inhibitor K252a on human prostatic carcinoma cell lines. J. Androl. 17: 481–490.PubMedGoogle Scholar
  40. 39.
    Delsite, R. and D. Djakiew. 1999. Characterization of nerve growth factor precursor protein expression by human prostate stromal cells: a role in selective neurotrophin stimulation of prostate epithelial cell growth. Prostate 41: 39–48.PubMedCrossRefGoogle Scholar
  41. 40.
    di Sant’Agnese, P. A. and A. T. Cockett. 1996. Neuroendocrine differentiation in prostatic malignancy. Cancer 78: 357–361.PubMedCrossRefGoogle Scholar
  42. 41.
    Diaz, M., M. Abdul, and N. Hoosein. 1998. Modulation of neuroendocrine differentiation in prostate cancer by interleukin-1 and -2. Prostate Suppl. 8: 32–36.PubMedCrossRefGoogle Scholar
  43. 42.
    Downward, J., R. Riehl, L. Wu, and R. A. Weinberg. 1990. Identification of a nucleotide exchange-promoting activity for p21ras. Proc. Natl. Acad. Sci. USA 87: 5998–6002.PubMedCrossRefGoogle Scholar
  44. 43.
    Evans, C. P., F. Elfman, S. Parangi, M. Conn, G. Cunha, and M. A. Shuman. 1997. Inhibition of prostate cancer neovascularization and growth by urokinase-plasminogen activator receptor blockade. Cancer Res. 57: 3594–3599.PubMedGoogle Scholar
  45. 44.
    Festuccia, C., F. Guerra, S. D’Ascenzo, D. Giunciuglio, A. Albini, and M. Bologna. 1998. In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin. Int. J. Cancer 75: 418–431.PubMedCrossRefGoogle Scholar
  46. 45.
    Fournier, G., A. Latil, Y. Amet, J. H. Abalain, A. Volant, P. Mangin, et al. 1995. Gene amplifications in advanced-stage human prostate cancer. Ural. Res. 22: 343–347.CrossRefGoogle Scholar
  47. 46.
    Fox, S. B., R. A. Persad, N. Coleman, C. A. Day, P. B. Silcocks, and C. C. Collins. 1994. Prognostic value of c-erbB-2 and epidermal growth factor receptor in stage Al (T1 a) pro-static adenocarcinoma. Br. J. Ural. 74: 214–220.CrossRefGoogle Scholar
  48. 47.
    Frisch, S. M. and H. Francis. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619–626.PubMedCrossRefGoogle Scholar
  49. 48.
    Frisch, S. M., K. Vuori, D. Kelaita, and S. Sicks. 1996. A role for Jun-N-terminal kinase in anoikis; suppression by bc1–2 and crmA. J. Cell Biol. 135: 1377–1382.PubMedCrossRefGoogle Scholar
  50. 49.
    Geldof, A. A., M. A. De Kleijn, B. R. Rao, and D. W. Newling. 1997. Nerve growth factor stimulates in vitro invasive capacity of DU145 human prostatic cancer cells. J. Cancer Res. Clin. Oncol. 123: 107–112.PubMedCrossRefGoogle Scholar
  51. 50.
    George, D. J., H. Suzuki, G. S. Bova, and J. T. Isaacs. 1998. Mutational analysis of the TrkA gene in prostate cancer. Prostate 36: 172–180.PubMedCrossRefGoogle Scholar
  52. 51.
    Giri, D., F. Ropiquet, and M. Ittmann. 1999. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin. Cancer Res. 5: 1063–1071.PubMedGoogle Scholar
  53. 52.
    Gleave, M., J. T. Hsieh, C. A. Gao, A. C. von Eschenbach, and L. W. Chung. 1991. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51: 3753–3761.PubMedGoogle Scholar
  54. 53.
    Graham, D. K., T. L. Dawson, D. L. Mullaney, H. R. Snodgrass, and H. S. Earp. 1994. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer (published erratum appears in Cell Growth Differ 1994 Sep;5(9):1022). Cell Growth Differ. 5: 647–657.Google Scholar
  55. 54.
    Grasso, A. W. 1999. Neuregulin-induced signaling and cell biology in the LNCaP human prostate carcinoma cell line. Ph.D. ThesisGoogle Scholar
  56. 55.
    Grasso, A. W., D. Wen, C. M. Miller, J. S. Rhim, T. G. Pretlow, and H. J. Kung. 1997. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 15: 2705–2716.PubMedCrossRefGoogle Scholar
  57. 56.
    Gresham, J., P. Margiotta, A. J. Palad, K. D. Somers, P. F. Blackmore, G. L. J. Wright, et al. 1998. Involvement of Shc in the signaling response of human prostate tumor cell lines to epidermal growth factor. Int. J. Cancer 77: 923–927.PubMedCrossRefGoogle Scholar
  58. 57.
    Gu, K., A. M. Mes-Masson, J. Gauthier, and F. Saad. 1996. Overexpression of her-2/neu in human prostate cancer and benign hyperplasia. Cancer Lett. 99: 185–189.PubMedCrossRefGoogle Scholar
  59. 58.
    Guy, P. M., J. V. Platko, L. C. Cantley, R. A. Cerione, and K. L. Carraway. 1994. Insect cell-expressed p 180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 91: 8132–8136.PubMedCrossRefGoogle Scholar
  60. 59.
    Hanks, S. K. and T. Hunter. 1995. Protein kinases 6. The eukaryotic protein kinase super-family: kinase (catalytic) domain structure and classification. FASEB J. 9: 576–596.PubMedGoogle Scholar
  61. 60.
    Heinrich, P. C., I. Behrmann, G. Muller-Newen, F. Schaper, and L. Graeve. 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334 (Pt 2): 297–314.PubMedGoogle Scholar
  62. 61.
    Hirano, T., K. Nakajima, and M. Hibi. 1997. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev. 8: 241–252.PubMedCrossRefGoogle Scholar
  63. 62.
    Hobeika, A. C., W. Etienne, P. E. Cruz, P. S. Subramaniam, and H. M. Johnson. 1998. IFNgamma induction of p21WAF1 in prostate cancer cells: role in cell cycle, alteration of phenotype and invasive potential. Int. J. Cancer 77: 138–145.PubMedCrossRefGoogle Scholar
  64. 63.
    Hobisch, A., I. E. Eder, T. Putz, W. Horninger, G. Bartsch, H. Klocker, et al. 1998. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58: 4640–4645.PubMedGoogle Scholar
  65. 64.
    Holmes, W. E., M. X. Sliwkowski, R. W. Akita, W. J. Henzel, J. Lee, J. W. Park, et al. 1992. Identification of heregulin, a specific activator of p185erbB2. Science 256: 1205–1210.PubMedCrossRefGoogle Scholar
  66. 65.
    Humphrey, P. A., X. Zhu, R. Zarnegar, P. E. Swanson, T. L. Ratliff, R. T. Vollmer, et al. 1995. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 147: 386–396.PubMedGoogle Scholar
  67. 66.
    Iwamura, M., K. Koshiba, and A. T. Cockett. 1998. Receptors for BPH growth factors are located in some neuroendocrine cells. Prostate Suppl. 8: 14–17.PubMedCrossRefGoogle Scholar
  68. 67.
    Jarrard, D. F., B. F. Blitz, R. C. Smith, B. L. Patai, and D. B. Rukstalis. 1994. Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate 24: 46–53.PubMedCrossRefGoogle Scholar
  69. 68.
    Keller, E. T., C. Chang, and W. B. Ershler. 1996. Inhibition of NF-xß activity through maintenance of IicBa levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J. Biol. Chem. 271: 26,267–26, 275.Google Scholar
  70. 69.
    Khwaja, A. and J. Downward. 1997. Lack of correlation between activation of Jun-NH2terminal kinase and induction of apoptosis after detachment of epithelial cells. J. Cell Biol. 139: 1017–1023.PubMedCrossRefGoogle Scholar
  71. 70.
    Kim, H. E., S. J. Han, T. Kasza, R. Han, H. S. Choi, K. C. Palmer, et al. 1997. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function. Int. J. Radiat. Oncol. Biol. Phys. 39: 731–736.PubMedCrossRefGoogle Scholar
  72. 71.
    Kitsberg, D. I. and P. Leder. 1996. Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13: 2507–2515.PubMedGoogle Scholar
  73. 72.
    Kortylewski, M., P. C. Heinrich, A. Mackiewicz, U. Schniertshauer, U. Klingmuller, K. Nakajima, et al. 1999. Interleukin-6 and oncostatin M-induced growth inhibition of human A375 melanoma cells is STAT-dependent and involves upregulation of the cyclindependent kinase inhibitor p27/Kip l. Oncogene 18: 3742–3753.PubMedCrossRefGoogle Scholar
  74. 73.
    Kraus, M. H., P. Fedi, V. Starks, R. Muraro, and S. A. Aaronson. 1993. Demonstration of ligand-dependent signaling by the erbB-3 tyrosine kinase and its constitutive activation in human breast tumor cells. Proc. Natl. Acad. Sci. USA 90: 2900–2904.PubMedCrossRefGoogle Scholar
  75. 74.
    Kuhn, E. J., R. A. Kurnot, I. A. Sesterhenn, E. H. Chang, and J. W. Moul. 1993. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J. Uro1. 150: 1427–1433.Google Scholar
  76. 75.
    Kyriakis, J. M., H. App, X. F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, et al. 1992. Raf-1 activates MAP kinase-kinase. Nature 358: 417–421.PubMedCrossRefGoogle Scholar
  77. 76.
    Latil, A., J. C. Baron, O. Cussenot, G. Fournier, L. Boccon-Gibod, A. Le Duc, et al. 1994. Oncogene amplifications in early-stage human prostate carcinomas. Int. J. Cancer 59: 637, 638.Google Scholar
  78. 77.
    Leung, H. Y., J. Weston, W. J. Gullick, and G. Williams. 1997. A potential autocrine loop between heregulin-alpha and erbB-3 receptor in human prostatic adenocarcinoma. Br. J. Urol. 79: 212–216.PubMedCrossRefGoogle Scholar
  79. 78.
    Levitzki, A. and A. Gazit. 1995. Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782–1788.PubMedCrossRefGoogle Scholar
  80. 79.
    Lin, J., R. M. Adam, E. Santiestevan, and M. R. Freeman. 1999. The phosphatidylinositol 3’-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res. 59: 2891–2897.PubMedGoogle Scholar
  81. 80.
    Ling, L. and H. J. Kung. 1995. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol. Cell. Biol. 15: 6582–6592.PubMedGoogle Scholar
  82. 81.
    Lowenstein, E. J., R. J. Daly, A. G. Batzer, W. Li, B. Margolis, R. Lammers, et al. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70: 431–442.PubMedCrossRefGoogle Scholar
  83. 82.
    Lyne, J. C., M. F. Melhem, G. G. Finley, D. Wen, N. Liu, D. H. Deng, et al. 1997. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J. Sci. Am. 3: 21–30.PubMedGoogle Scholar
  84. 83.
    Ma, A. D., A. Metjian, S. Bagrodia, S. Taylor, and C. S. Abrams. 1998. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase gamma, a Rac guanosine exchange factor, and Rac. Mol. Cell. Biol. 18: 4744 4751.Google Scholar
  85. 84.
    MacDonald, A. and F. K. Habib. 1992. Divergent responses to epidermal growth factor in hormone sensitive and insensitive human prostate cancer cell lines. Br. J. Cancer 65: 177–182.PubMedCrossRefGoogle Scholar
  86. 85.
    Manes, S., M. Llorente, R. A. Lacalle, C. Gomez-Mouton, L. Kremer, E. Mira, et al. 1999. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 274: 6935–6945.PubMedCrossRefGoogle Scholar
  87. 86.
    Marchionni, M. A., A. D. Goodearl, M. S. Chen, O. Bermingham-McDonogh, C. Kirk, M. Hendricks, et al. 1993. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system (see comments). Nature 362: 312–318.PubMedCrossRefGoogle Scholar
  88. 87.
    Marengo, S. R., R. A. Sikes, P. Anezinis, S. M. Chang, and L. W. Chung. 1997. Metastasis induced by overexpression of p185neu-T after orthotopic injection into a prostatic epithelial cell line (NbE). Mol. Carcinog. 19: 165–175.PubMedCrossRefGoogle Scholar
  89. 88.
    Mark, H. F., D. Feldman, S. Das, H. Kye, S. Mark, C. L. Sun, et al. 1999. Fluorescence in situ hybridization study of HER-2/neu oncogene amplification in prostate cancer. Exp. Mol. Pathol. 66: 170–178.PubMedCrossRefGoogle Scholar
  90. 89.
    Marz, P., T. Herget, E. Lang, U. Otten, and S. Rose-John. 1997. Activation of gp130 by IL-6/soluble IL-6 receptor induces neuronal differentiation. Eur. J. Neurosci. 9: 2765–2773 (published erratum appears in Eur. J. Neurosci. 1998 May; 10 (5): 1936 ).Google Scholar
  91. 90.
    Meng, T. C. and M. F. Lin. 1998. Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells. J. Biol. Chem. 273: 22,096–22, 104.Google Scholar
  92. 91.
    Minden, A., A. Lin, F. X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81: 1147–1157.PubMedCrossRefGoogle Scholar
  93. 92.
    Mori, S., K. Murakami-Mori, and B. Bonavida. 1999. Interleukin-6 induces G1 arrest through induction of p27(Kipl), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem. Biophys. Res. Commun. 257: 609–614.PubMedCrossRefGoogle Scholar
  94. 93.
    Morote, J., I. De Torres, C. Caceres, C. Vallejo, S. J. Schwartz, and J. Reventos. 1999. Prognostic value of immunohistochemical expression of the c-erbB-2 oncoprotein in metastasic prostate cancer. Int. J. Cancer 84: 421–425.PubMedCrossRefGoogle Scholar
  95. 93a.
    Myers, R. B., D. Brown, D. K. Oelschlager, J. W. Waterbor, M. E. Marshall, S. Srivastava, C. R. Stockard, D. A. Urban, and W. E. Grizzle. 1996. Elevated serum levels of p105(erbB-2) in patients with advanced-stage prostate adenocarcinoma. Int. J. Cancer 69: 398–402.PubMedCrossRefGoogle Scholar
  96. 94.
    Myers, R. B., J. E. Kudlow, and W. E. Grizzle. 1993. Expression of transforming growth factor-alpha, epidermal growth factor and the epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Mod. Pathol. 6: 733–737.PubMedGoogle Scholar
  97. 95.
    Myers, R. B., D. Oelschlager, U. Manne, P. N. Coan, H. Weiss, and W. E. Grizzle. 1999. Androgenic regulation of growth factor and growth factor receptor expression in the CWR22 model of prostatic adenocarcinoma. Int. J. Cancer 82: 424–429.Google Scholar
  98. 96.
    Myers, R. B., S. Srivastava, D. K. Oelschlager, and W. E. Grizzle. 1994. Expression of p160erbB-3 and p185erbB-2 in prostatic intraepithelial neoplasia and prostatic adenocarcinoma (see comments). J. Natl. Cancer Inst. 86: 1140–1145.PubMedCrossRefGoogle Scholar
  99. 97.
    Nagata, Y. and K. Todokoro. 1999. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 94: 853–863.PubMedGoogle Scholar
  100. 98.
    Nakajima, Y., A. M. DelliPizzi, C. Mallouh, and N. R. Ferreri. 1996. TNF-mediated cytotoxicity and resistance in human prostate cancer cell lines. Prostate 29: 296–302.PubMedCrossRefGoogle Scholar
  101. 99.
    Noordzij, M. A., W. M. van Weerden, C. M. A. de Ridder, T. H. van der Kwast, F. H. Schroder, and G. J. van Steenbrugge. 1996. Neuroendocrine differentiation in human prostatic tumor models. Am. J. Pathol. 149: 859–871.PubMedGoogle Scholar
  102. 100.
    Okamoto, M., C. Lee, and R. Oyasu. 1997. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res. 57: 141–146.PubMedGoogle Scholar
  103. 101.
    Ozes, O. N., L. D. Mayo, J. A. Gustin, S. R. Pfeffer, L. M. Pfeffer, and D. B. Donner. 1999. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase (see comments). Nature 401: 82–85.PubMedCrossRefGoogle Scholar
  104. 102.
    Paul, A. B., E. S. Grant, and F. K. Habib. 1996. The expression and localisation of beta-nerve growth factor (beta-NGF) in benign and malignant human prostate tissue: relationship to neuroendocrine differentiation. Br. J. Cancer 74: 1990–1996.PubMedCrossRefGoogle Scholar
  105. 103.
    Peehl, D. M. and J. S. Rubin. 1995. Keratinocyte growth factor: an androgen-regulated mediator of stromal-epithelial interactions in the prostate. World J. Urol. 13: 312–317.PubMedGoogle Scholar
  106. 104.
    Pegram, M., S. Hsu, G. Lewis, R. Pietras, M. Beryt, M. Sliwkowski, et al. 1999. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18: 2241–2251.PubMedCrossRefGoogle Scholar
  107. 105.
    Peles, E., S. S. Bacus, R. A. Koski, H. S. Lu, D. Wen, S. G. Ogden, et al. 1992. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205–216.PubMedCrossRefGoogle Scholar
  108. 106.
    Pelicci, G., L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, et al. 1992. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70: 93–104.PubMedCrossRefGoogle Scholar
  109. 107.
    Perry, J. E., M. E. Grossmann, and D. J. Tindall. 1998. Epidermal growth factor induces cyclin Dl in a human prostate cancer cell line. Prostate 35: 117–124.PubMedCrossRefGoogle Scholar
  110. 108.
    Pflug, B. and D. Djakiew. 1998. Expression of p75NTR in a human prostate epithelial tumor cell line reduces nerve growth factor-induced cell growth by activation of programmed cell death. Mol. Carcinog. 23: 106–114.PubMedCrossRefGoogle Scholar
  111. 109.
    Pflug, B. R., M. Onoda, J. H. Lynch, and D. Djakiew. 1992. Reduced expression of the low affinity nerve growth factor receptor in benign and malignant human prostate tissue and loss of expression in four human metastatic prostate tumor cell lines. Cancer Res. 52: 5403–5406.PubMedGoogle Scholar
  112. 110.
    Plowman, G. D., J. M. Culouscou, G. S. Whitney, J. M. Green, G. W. Carlton, L. Foy, et al. 1993. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl. Acad. Sci. USA 90: 1746–1750.PubMedCrossRefGoogle Scholar
  113. 111.
    Poller, D. N., I. Spendlove, C. Baker, R. Church, I. O. Ellis, G. D. Plowman, et al. 1992. Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas. J. Pathol. 168: 275–280.PubMedCrossRefGoogle Scholar
  114. 112.
    Putz, T., Z. Culig, I. E. Eder, C. Nessler-Menardi, G. Bartsch, H. Grunicke, et al. 1999. Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines. Cancer Res. 59: 227–233.Google Scholar
  115. 113.
    Qiu, Y., L. Ravi, and H.-J. Kung. 1998. Requirement of ErbB2 for signaling by interleukin-6 in prostate carcinoma cells. Nature 393: 83–85.Google Scholar
  116. 114.
    Qiu, Y., D. Robinson, T. G. Pretlow, and H. J. Kung. 1998. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3’-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA 95: 3644–3649.Google Scholar
  117. 115.
    Quax, P. H., A. C. de Bart, J. A. Schalken, and J. H. Verheijen. 1997. Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 32: 196–204. Google Scholar
  118. 116.
    Rajan, R., R. Vanderslice, S. Kapur, J. Lynch, R. Thompson, and D. Djakiew. 1996. Epidermal growth factor (EGF) promotes chemomigration of a human prostate tumor cell line, and EGF immunoreactive proteins are present at sites of metastasis in the stroma of lymph nodes and medullary bone. Prostate 28: 1–9.PubMedCrossRefGoogle Scholar
  119. 117.
    Ramaswamy, S., N. Nakamura, F. Vazquez, D. B. Batt, S. Perera, T. M. Roberts, et al. 1999. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 96: 2110–2115.PubMedCrossRefGoogle Scholar
  120. 118.
    Robinson, D., F. He, T. Pretlow, and H. J. Kung. 1996. A tyrosine kinase profile of prostate carcinoma. Proc. Natl. Acad. Sci. USA 93: 5958–5962.PubMedCrossRefGoogle Scholar
  121. 119.
    Rohlff, C., M. V. Blagosklonny, E. Kyle, A. Kesari, I. Y. Kim, D. J. Zelner, et al. 1998. Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21(wafl/cipl). Prostate 37: 51–59. Google Scholar
  122. 120.
    Romashkova, J. A. and S. S. Makarov. 1999. NF-kappaB is a target of AKT in antiapoptotic PDGF signalling (see comments). Nature 401: 86–90.PubMedCrossRefGoogle Scholar
  123. 121.
    Ropiquet, F., P. Berthon, J. M. Villette, G. Le Brun, N. J. Maitland, O. Cussenot, et al. 1997. Constitutive expression of FGF2/bFGF in non-tumorigenic human prostatic epithelial cells results in the acquisition of a partial neoplastic phenotype. Int. J. Cancer 72: 543–547. Google Scholar
  124. 122.
    Ross, J. S., T. Nazeer, K. Church, C. Amato, H. Figge, M. D. Rifkin, et al. 1993. Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer 72: 3020–3028.PubMedCrossRefGoogle Scholar
  125. 123.
    Ross, J. S., C. Sheehan, A. M. Hayner-Buchan, R. A. Ambros, B. V. Kallakury, R. Kaufman, et al. 1997. HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum. Pathol. 28: 827–833.PubMedCrossRefGoogle Scholar
  126. 124.
    Ross, J. S., C. E. Sheehan, A. M. Hayner-Buchan, R. A. Ambros, B. V. Kallakury, R. P. J. Kaufman, et al. 1997. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer 79: 2162–2170.PubMedCrossRefGoogle Scholar
  127. 125.
    Russell, P. J. S. Bennett, A. Joshua, Y. Yu, S. R. Downing, M. A. Hill, et al. 1999. Elevated expression of FGF-2 does not cause prostate cancer progression in LNCaP cells. Prostate 40: 1–13.Google Scholar
  128. 126.
    Sadar, M. D. 1999. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J. Biol. Chem. 274: 7777–7783.PubMedCrossRefGoogle Scholar
  129. 127.
    Saez, C., A. C. Gonzalez-Baena, M. A. Japon, J. Giraldez, D. I. Segura, J. M. Rodriguez-Vallejo, et al. 1999. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride. Prostate 40: 83–88.Google Scholar
  130. 128.
    Saharinen, P. N. Ekman, K. Sarvas, P. Parker, K. Alitalo, and O. Silvennoinen. 1997. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta. Blood 90: 4341–4353.Google Scholar
  131. 129.
    Salim, K., M. J. Bottomley, E. Querfurth, M. J. Zvelebil, I. Gout, R. Scaife, et al. 1996. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J. 15: 6241–6250.PubMedGoogle Scholar
  132. 130.
    Sanders, L. C., F. Matsumura, G. M. Bokoch, and P. de Lanerolle. 1999 Inhibition of myosin light chain kinase by p21-activated kinase (see comments). Science 283: 2083–2085.PubMedCrossRefGoogle Scholar
  133. 131.
    Saric, T. and S. A. Shain. 1998. Androgen regulation of prostate cancer cell FGF-1, FGF-2, and FGF-8: preferential down-regulation of FGF-2 transcripts. Growth Factors 16: 69–87.PubMedCrossRefGoogle Scholar
  134. 132.
    Scher, H. I., A. Sarkis, V. Reuter, D. Cohen, G. Netto, D. Petrylak, et al. 1995. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin. Cancer Res. 1: 545–550.Google Scholar
  135. 133.
    Schoenwaelder, S. M. and K. Burridge. 1999. Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11: 274–286.PubMedCrossRefGoogle Scholar
  136. 134.
    Schwartz, S. J., C. Caceres, J. Morote, I. De Torres, J. M. Rodriguez-Vallejo, J. Gonzalez, et al. 1999. Gains of the relative genomic content of erbB-1 and erbB-2 in prostate carcinoma and their association with metastasis. Int. J. Oncol. 14: 367–371.Google Scholar
  137. 135.
    Sehgal, I. J. Bailey, K. Hitzemann, M. R. Pittelkow, and N. J. Maihle. 1994. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells. Mol. Biol. Cell 5: 339–347.Google Scholar
  138. 136.
    Sells, M. A., J. T. Boyd, and J. Chernoff. 1999. p21-activated kinase 1 (Pak 1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145: 837–849.Google Scholar
  139. 137.
    Sells, M. A., U. G. Knaus, S. Bagrodia, D. M. Ambrose, G. M. Bokoch, and J. Chernoff. 1997. Human p21-activated kinase (Pakl) regulates actin organization in mammalian cells. Curr. Biol. 7: 202–210.PubMedCrossRefGoogle Scholar
  140. 138.
    Shen, R., T. Dorai, M. Szaboles, A. E. Katz, C. A. Olsson, and R. Buttyan. 1997. Transdifferentiation of cultured human prostate cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol. Res. 3: 67–75.Google Scholar
  141. 139.
    Siegsmund, M. J., H. Yamazaki, and I. Pastan. 1994. Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J. Urol. 151: 1396–1399.PubMedGoogle Scholar
  142. 140.
    Slamon, D. J. 1998. Addition of Herceptin (humanized anti-HER2 antibody) to first line chemotherapy for HER 2 overexpressiong matastatic breast cancer (HER2+/MBC) mark-edly increases anticancer activity: a randomized, multinational controlled phrase III trial. Progr. Proc. Am. Soc. Clin. Oncol. 17.Google Scholar
  143. 141.
    Sterneck, E., D. R. Kaplan, and P. F. Johnson. 1996. Interleukin-6 induces expression of peripherin and cooperates with Trk receptor signaling to promote neuronal differentiation in PC12 cells. J. Neurochem. 67: 1365–1374. Google Scholar
  144. 142.
    Story, M. T., B. Livingston, L. Baeten, S. J. Swartz, S. C. Jacobs, F. P. Begun, et al. 1989. Cultured human prostate-derived fibroblasts produce a factor that stimulates their growth with properties indistinguishable from basic fibroblast growth factor. Prostate 15: 355–365. Google Scholar
  145. 143.
    Sundareshan, P., R. B. Nagle, and G. T. Bowden. 1999. EGF induces the expression of matrilysin in the human prostate adenocarcinoma cell line, LNCaP (in process citation). Prostate 40: 159–166. Google Scholar
  146. 144.
    Tamagnone, L., I. Lahtinen, T. Mustonen, K. Virtaneva, F. Francis, F. Muscatelli, et al. 1994. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene 9: 3683–3688.PubMedGoogle Scholar
  147. 145.
    Tan, M., R. Grijalva, and D. Yu. 1999. Heregulin betal-activated phosphatidylinositol 3-kinase enhances aggregation of MCF-7 breast cancer cells independent of extracellular signal-regulated kinase. Cancer Res. 59: 1620–1625.PubMedGoogle Scholar
  148. 146.
    Tanaka, A., A. Furuya, M. Yamasaki, N. Hanai, K. Kuriki, T. Kamiakito, et al. 1998. High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF 8. Cancer Res. 58: 2053–2056.PubMedGoogle Scholar
  149. 147.
    Tillotson, J. K. and D. P. Rose. 1991. Density-dependent regulation of epidermal growth factor receptor expression in DU 145 human prostate cancer cells. Prostate 19: 53–61.PubMedCrossRefGoogle Scholar
  150. 148.
    Turner, T., P. Chen, L. J. Goodly, and A. Wells. 1996. EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin. Exp. Metastasis 14: 409–418. Google Scholar
  151. 149.
    Turner, T., M. V. Epps-Fung, J. Kassis, and A. Wells. 1997. Molecular inhibition of phospholipase cgamma signaling abrogates DU-145 prostate tumor cell invasion. Clin. Cancer Res. 3: 2275–2282. Google Scholar
  152. 150.
    Vlietstra, R. J., D. C. van Alewijk, K. G. Hermans, G. J. van Steenbrugge, and J. Trapman. 1998. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58: 2720–2723. Google Scholar
  153. 151.
    Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.PubMedCrossRefGoogle Scholar
  154. 152.
    Ware, J. L. 1993. Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metastasis Rev. 12: 287–301.PubMedCrossRefGoogle Scholar
  155. 153.
    Watanabe, M., T. Nakada, and H. Yuta. 1999. Analysis of protooncogene c-erbB-2 in benign and malignant human prostate. Int. Urol. Nephrol. 31: 61–73.PubMedCrossRefGoogle Scholar
  156. 154.
    Wilson, C. L. and L. M. Matrisian. 1996. Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int. J. Biochem. Cell Biol. 28: 123–136.PubMedCrossRefGoogle Scholar
  157. 155.
    Wu, X., K. Senechal, M. S. Neshat, Y. E. Whang, and C. L. Sawyers. 1998. The PTEN/ MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 95: 15,587–15, 591.Google Scholar
  158. 156.
    Wu, Y. Y. and R. A. Bradshaw. 1996. Induction of neurite outgrowth by interleukin-6 is accompanied by activation of Stat3 signaling pathway in a variant PC12 cell (E2) line. J. Biol. Chem. 271: 13,023–13,032. Google Scholar
  159. 157.
    Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.PubMedCrossRefGoogle Scholar
  160. 158.
    Xie, H., M. A. Pallero, K. Gupta, P. Chang, M. F. Ware, W. Witke, et al. 1998. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions inde-Google Scholar
  161. pendently of the motility-associated PLCgamma signaling pathway. J. Cell Sci. 111 (Pt 5): 615–624.Google Scholar
  162. 159.
    Xue, L. Y., Y. Qiu, J. He, H. J. Kung, and N. L. Oleinick. 1999. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18: 3391–3398.PubMedCrossRefGoogle Scholar
  163. 160.
    Yan, G., Y. Fukabori, G. McBride, S. Nikolaropolous, and W. L. McKeehan. 1993. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol. Cell Biol. 13: 4513–4522.PubMedGoogle Scholar
  164. 161.
    Yao, R. and G. M. Cooper. 1995. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003–2006.PubMedCrossRefGoogle Scholar
  165. 162.
    Yeh, S., H. K. Lin, H. Y. Kang, T. H. Thin, M. F. Lin, and C. Chang. 1999. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA 96: 5458–5463.PubMedCrossRefGoogle Scholar
  166. 163.
    Yu, D., T. Jing, B. Liu, J. Yao, M. Tan, T. J. McDonnell, et al. 1998. Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p2lCipl, which inhibits p34Cdc2 kinase. Mol. Cell 2: 581–591.PubMedCrossRefGoogle Scholar
  167. 164.
    Zetser, A., E. Gredinger, and E. Bengal. 1999. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J. Biol. Chem. 274: 5193–5200.Google Scholar
  168. 165.
    Zhau, H. E., L. L. Pisters, M. C. Hall, L. S. Zhao, P. Troncoso, A. Pollack, et al. 1994. Biomarkers associated with prostate cancer progression. J. Cell Biochem. Suppl. 19: 208–216.PubMedGoogle Scholar
  169. 166.
    Zhau, H. Y., J. Zhou, W. F. Symmans, B. Q. Chen, S. M. Chang, R. A. Sikes, et al. 1996. Transfected neu oncogene induces human prostate cancer metastasis. Prostate 28: 73–83.Google Scholar
  170. 167.
    Zi, X., A. W. Grasso, H. J. Kung, and R. Agarwal. 1998. A flavonoid antioxidant, silymarin, inhibits activation of erbB 1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res. 58: 1920–1929.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hsing-Jien Kung
  • Clifford G. Tepper
  • Ralph W. deVere White

There are no affiliations available

Personalised recommendations