Advertisement

Evaluation of Renal Function and Proteinuria

  • Ira W. Reiser
  • Jerome G. Porush
Chapter
Part of the Current Clinical Practice book series (CCP)

Abstract

When evaluating renal function, the clinician is oftentimes asked to estimate the glomerular filtration rate (GFR) and to determine whether the ability of the kidney to dilute and concentrate, acidify the urine, or function as a barrier to the excretion of protein is impaired. This chapter reviews each of these integral functions of the kidney and provides the clinician with a useful and practical approach to their assessment.

Keywords

Glomerular Filtration Rate Renal Tubular Acidosis Urine Dipstick Inulin Clearance Hyperchloremic Metabolic Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith HW (1951) The reliability of inulin as a measure of glomerular filtration. In: The Kidney: Structure and Function in Health and Disease, New York: Oxford University Press, pp. 231–238.Google Scholar
  2. 2.
    Levey AS, Perrone RD, Madias NE (1988) Serum creatinine and renal function. Annu Rev Med 39: 456–490.CrossRefGoogle Scholar
  3. 3.
    Levey AS (1990) Nephrology forum: measurement of renal function in chronic renal disease. Kidney Int 38: 167–184.PubMedCrossRefGoogle Scholar
  4. 4.
    Bauer JH, Brooks CS, Burch RN (1982) Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 2: 337–346.PubMedGoogle Scholar
  5. 5.
    Shemesh D, Golbetz H, Kriss JP, et al. (1985) Limitation of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28: 830–838.PubMedCrossRefGoogle Scholar
  6. 6.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Moller E, McIntosh JF, Van Slyke DD (1928) Studies on urea excretion: relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest 6: 427.PubMedCrossRefGoogle Scholar
  8. 8.
    Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in non-diuretic mammalian kidney. Am J Physiol 200: 1139.PubMedGoogle Scholar
  9. 9.
    Lassiter WE, Mylle M, Gottschalk CW (1964) Net transtubular movement of water and urea in saline diuresis. Am J Physiol 206: 669.PubMedGoogle Scholar
  10. 10.
    Dossetor JB (1966) Creatininemia versus uremia: the relative significance of blood urea nitrogen and serum creatinine concentrations in azotemia. Ann Intern Med 65: 1287–1299.PubMedGoogle Scholar
  11. 11.
    Perrone RD, Steinman TI, Beck GJ, et al. and the modification of diet in renal disease study (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-Iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. Am J Kidney Dis 16: 224–235.Google Scholar
  12. 12.
    Rehling M, Rabol A (1989) Measurement of glomerular filtration rate in adults: accuracy of five single-sample plasma clearance methods. Clin Physiol 9: 171–182.PubMedCrossRefGoogle Scholar
  13. 13.
    Blaufox MD (1991) Procedures of choice in renal nuclear medicine. J Nucl Med 32: 1301–1309.PubMedGoogle Scholar
  14. 14.
    Lundqvist S, Hietala SO, Groth S, et al. (1997) Evaluation of single sample clearance calculations in 902 patients: a comparison of multiple and single sample techniques. Acta Radiol 38: 68–72.PubMedGoogle Scholar
  15. 15.
    Nilsson-Ehle P, Grubb A (1994) New markers for the determination of GFR: iohexol clearance and cystatin C serum concentration. Kidney Im 46 (Suppl. 47): S 17 - S19.Google Scholar
  16. 16.
    Rocco MV, Buckalew VM Jr, Moore LC, et al. (1996) Capillary electrophoresis for the determination of glomerular filtration rate using nonradioactive iohexol. Am J Kidney Dis 28: 173–177.PubMedCrossRefGoogle Scholar
  17. 17.
    Gaspari F, Mosconi L, Vigano G, et al. (1992) Measurement of GFR with a single injection of nonradioactive iothalamate. Kidney Int 41: 1081–1084.PubMedCrossRefGoogle Scholar
  18. 18.
    Frennby B, Sterner G, Almen T, et al. (1995) The use of iohexol clearance to determine GFR in patients with severe chronic renal failure-a comparison between different clearance techniques. Clin Nephrol 43: 35–46.PubMedGoogle Scholar
  19. 19.
    Wolf AV (1962) Urinary concentrative properties. Am J Med 32: 329–331.PubMedCrossRefGoogle Scholar
  20. 20.
    Rose BD (1986) New approach to disturbances in the plasma sodium concentration. Am J Med 81: 1033–1040.PubMedCrossRefGoogle Scholar
  21. 21.
    Harrington JT, Cohen JJ (1973) Clinical disorders of urine concentration and dilution. Arch Intern Med 131: 810–825.PubMedCrossRefGoogle Scholar
  22. 22.
    Miller M, Dalakost T, Moses AM, et al. (1970) Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med 73: 721–729.PubMedGoogle Scholar
  23. 23.
    Tryding N, Berg B, Ekman S, et al. (1988) DDAVP test for renal concentration capacity: age-related reference intervals. Scand J Urol Nephrol 22: 141–145.PubMedGoogle Scholar
  24. 24.
    Richardson RMA, Halperin ML (1987) The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis 10: 140–143.PubMedGoogle Scholar
  25. 25.
    Batik DC, Hizon M, Cohen E, et al. (1988) The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318: 594–599.CrossRefGoogle Scholar
  26. 26.
    Halperin ML, Richardson RMA, Bear RA, et al. (1988) Urine ammonium: the key to the diagnosis of distal renal tubular acidosis. Nephron 50: 1–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Arruda JAL, Kurtzman NA (1980) Mechanisms and classification of deranged distal urinary acidification. Am J Physiol 239: F515 - F523.PubMedGoogle Scholar
  28. 28.
    Rose BD (1988) Isolated Proteinuria and Hematuria, in Manual of Clinical Problems in Nephrology. Boston: Little Brown, pp. 130–132.Google Scholar
  29. 29.
    Robinson RR (1980) Isolated proteinuria in asymptomatic patients. Kidney Int 18: 395–406.PubMedCrossRefGoogle Scholar
  30. 30.
    Poortmans JR (1985) Postexercise proteinuria in humans: facts and mechanisms. JAMA 253: 236–240.PubMedCrossRefGoogle Scholar
  31. 31.
    Springberg PD, Garrett LE Jr, Thompson AL Jr, et al. (1982) Fixed and reproducible orthostatic proteinuria: results of a 20-year follow-up study. Ann Intern Med 97: 516–519.PubMedGoogle Scholar
  32. 32.
    Rytand DA, Spreiter S (1981) Prognosis in postural (orthostatic) proteinuria: forty to fifty-year follow-up of six patients after diagnosis by Thomas Addis. N Engl J Med 305: 618–620.PubMedCrossRefGoogle Scholar
  33. 33.
    Rose BD (1987) Pathophysiology of Renal Disease, 2nd ed, New York: McGraw-Hill, pp. 11–16.Google Scholar
  34. 34.
    Ginsberg JM, Chang BS, Matarese RA, et al. (1983) Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 309: 1543–1546.PubMedCrossRefGoogle Scholar
  35. 35.
    Schwab SJ, Christensen RL, Dougherty K, et al. (1987) Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med 147: 943–944.PubMedCrossRefGoogle Scholar
  36. 36.
    American Diabetes Association (1994) Consensus development conference on the diagnosis and management in patients with diabetes mellitus. Diabetes Care 17: 1357–1361.Google Scholar
  37. 37.
    James MA, Fotherby MD, Potter JF (1995) Screening tests for microalbuminuria in non-diabetic elderly subjects and their relation to blood pressure. Clin Sci 88: 185–190.PubMedGoogle Scholar
  38. 38.
    Damsgaard EM, Froland A, Jorgensen OD, et al. (1990) Microalbuminuria as predictor of increased mortality in elderly people. BMJ 300: 297–300.PubMedCrossRefGoogle Scholar
  39. 39.
    Yudkin JS, Forrest RD, Jackson CA (1988) Microalbuminuria as predictor of vascular disease in non-diabetic subjects: Islington Diabetes Survey. Lancet 2: 530–533.PubMedCrossRefGoogle Scholar
  40. 40.
    Nathan DM, Rosenbaum C, Protasowicki VD (1987) Single-void urine samples can be used to estimate quantitative microalbuminuria. Diabetes Care 10: 414–418.PubMedCrossRefGoogle Scholar
  41. 41.
    Mogensen CE, Vestbo E, Poulsen PL, et al. (1995) Microalbuminuria and potential confounders: a review and some observations on variability of urinary albumin excretion. Diabetes Care 18: 572–581.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ira W. Reiser
  • Jerome G. Porush

There are no affiliations available

Personalised recommendations