Skip to main content

Evaluation of Renal Function and Proteinuria

  • Chapter
Hypertension Medicine

Part of the book series: Current Clinical Practice ((CCP))

  • 158 Accesses

Abstract

When evaluating renal function, the clinician is oftentimes asked to estimate the glomerular filtration rate (GFR) and to determine whether the ability of the kidney to dilute and concentrate, acidify the urine, or function as a barrier to the excretion of protein is impaired. This chapter reviews each of these integral functions of the kidney and provides the clinician with a useful and practical approach to their assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith HW (1951) The reliability of inulin as a measure of glomerular filtration. In: The Kidney: Structure and Function in Health and Disease, New York: Oxford University Press, pp. 231–238.

    Google Scholar 

  2. Levey AS, Perrone RD, Madias NE (1988) Serum creatinine and renal function. Annu Rev Med 39: 456–490.

    Article  Google Scholar 

  3. Levey AS (1990) Nephrology forum: measurement of renal function in chronic renal disease. Kidney Int 38: 167–184.

    Article  PubMed  CAS  Google Scholar 

  4. Bauer JH, Brooks CS, Burch RN (1982) Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 2: 337–346.

    PubMed  CAS  Google Scholar 

  5. Shemesh D, Golbetz H, Kriss JP, et al. (1985) Limitation of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28: 830–838.

    Article  PubMed  CAS  Google Scholar 

  6. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41.

    Article  PubMed  CAS  Google Scholar 

  7. Moller E, McIntosh JF, Van Slyke DD (1928) Studies on urea excretion: relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest 6: 427.

    Article  PubMed  CAS  Google Scholar 

  8. Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in non-diuretic mammalian kidney. Am J Physiol 200: 1139.

    PubMed  CAS  Google Scholar 

  9. Lassiter WE, Mylle M, Gottschalk CW (1964) Net transtubular movement of water and urea in saline diuresis. Am J Physiol 206: 669.

    PubMed  CAS  Google Scholar 

  10. Dossetor JB (1966) Creatininemia versus uremia: the relative significance of blood urea nitrogen and serum creatinine concentrations in azotemia. Ann Intern Med 65: 1287–1299.

    PubMed  CAS  Google Scholar 

  11. Perrone RD, Steinman TI, Beck GJ, et al. and the modification of diet in renal disease study (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-Iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. Am J Kidney Dis 16: 224–235.

    Google Scholar 

  12. Rehling M, Rabol A (1989) Measurement of glomerular filtration rate in adults: accuracy of five single-sample plasma clearance methods. Clin Physiol 9: 171–182.

    Article  PubMed  CAS  Google Scholar 

  13. Blaufox MD (1991) Procedures of choice in renal nuclear medicine. J Nucl Med 32: 1301–1309.

    PubMed  CAS  Google Scholar 

  14. Lundqvist S, Hietala SO, Groth S, et al. (1997) Evaluation of single sample clearance calculations in 902 patients: a comparison of multiple and single sample techniques. Acta Radiol 38: 68–72.

    PubMed  CAS  Google Scholar 

  15. Nilsson-Ehle P, Grubb A (1994) New markers for the determination of GFR: iohexol clearance and cystatin C serum concentration. Kidney Im 46 (Suppl. 47): S 17 - S19.

    Google Scholar 

  16. Rocco MV, Buckalew VM Jr, Moore LC, et al. (1996) Capillary electrophoresis for the determination of glomerular filtration rate using nonradioactive iohexol. Am J Kidney Dis 28: 173–177.

    Article  PubMed  CAS  Google Scholar 

  17. Gaspari F, Mosconi L, Vigano G, et al. (1992) Measurement of GFR with a single injection of nonradioactive iothalamate. Kidney Int 41: 1081–1084.

    Article  PubMed  CAS  Google Scholar 

  18. Frennby B, Sterner G, Almen T, et al. (1995) The use of iohexol clearance to determine GFR in patients with severe chronic renal failure-a comparison between different clearance techniques. Clin Nephrol 43: 35–46.

    PubMed  CAS  Google Scholar 

  19. Wolf AV (1962) Urinary concentrative properties. Am J Med 32: 329–331.

    Article  PubMed  CAS  Google Scholar 

  20. Rose BD (1986) New approach to disturbances in the plasma sodium concentration. Am J Med 81: 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  21. Harrington JT, Cohen JJ (1973) Clinical disorders of urine concentration and dilution. Arch Intern Med 131: 810–825.

    Article  PubMed  CAS  Google Scholar 

  22. Miller M, Dalakost T, Moses AM, et al. (1970) Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med 73: 721–729.

    PubMed  CAS  Google Scholar 

  23. Tryding N, Berg B, Ekman S, et al. (1988) DDAVP test for renal concentration capacity: age-related reference intervals. Scand J Urol Nephrol 22: 141–145.

    PubMed  CAS  Google Scholar 

  24. Richardson RMA, Halperin ML (1987) The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis 10: 140–143.

    PubMed  CAS  Google Scholar 

  25. Batik DC, Hizon M, Cohen E, et al. (1988) The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318: 594–599.

    Article  Google Scholar 

  26. Halperin ML, Richardson RMA, Bear RA, et al. (1988) Urine ammonium: the key to the diagnosis of distal renal tubular acidosis. Nephron 50: 1–4.

    Article  PubMed  CAS  Google Scholar 

  27. Arruda JAL, Kurtzman NA (1980) Mechanisms and classification of deranged distal urinary acidification. Am J Physiol 239: F515 - F523.

    PubMed  CAS  Google Scholar 

  28. Rose BD (1988) Isolated Proteinuria and Hematuria, in Manual of Clinical Problems in Nephrology. Boston: Little Brown, pp. 130–132.

    Google Scholar 

  29. Robinson RR (1980) Isolated proteinuria in asymptomatic patients. Kidney Int 18: 395–406.

    Article  PubMed  CAS  Google Scholar 

  30. Poortmans JR (1985) Postexercise proteinuria in humans: facts and mechanisms. JAMA 253: 236–240.

    Article  PubMed  CAS  Google Scholar 

  31. Springberg PD, Garrett LE Jr, Thompson AL Jr, et al. (1982) Fixed and reproducible orthostatic proteinuria: results of a 20-year follow-up study. Ann Intern Med 97: 516–519.

    PubMed  CAS  Google Scholar 

  32. Rytand DA, Spreiter S (1981) Prognosis in postural (orthostatic) proteinuria: forty to fifty-year follow-up of six patients after diagnosis by Thomas Addis. N Engl J Med 305: 618–620.

    Article  PubMed  CAS  Google Scholar 

  33. Rose BD (1987) Pathophysiology of Renal Disease, 2nd ed, New York: McGraw-Hill, pp. 11–16.

    Google Scholar 

  34. Ginsberg JM, Chang BS, Matarese RA, et al. (1983) Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 309: 1543–1546.

    Article  PubMed  CAS  Google Scholar 

  35. Schwab SJ, Christensen RL, Dougherty K, et al. (1987) Quantitation of proteinuria by the use of protein-to-creatinine ratios in single urine samples. Arch Intern Med 147: 943–944.

    Article  PubMed  CAS  Google Scholar 

  36. American Diabetes Association (1994) Consensus development conference on the diagnosis and management in patients with diabetes mellitus. Diabetes Care 17: 1357–1361.

    Google Scholar 

  37. James MA, Fotherby MD, Potter JF (1995) Screening tests for microalbuminuria in non-diabetic elderly subjects and their relation to blood pressure. Clin Sci 88: 185–190.

    PubMed  CAS  Google Scholar 

  38. Damsgaard EM, Froland A, Jorgensen OD, et al. (1990) Microalbuminuria as predictor of increased mortality in elderly people. BMJ 300: 297–300.

    Article  PubMed  CAS  Google Scholar 

  39. Yudkin JS, Forrest RD, Jackson CA (1988) Microalbuminuria as predictor of vascular disease in non-diabetic subjects: Islington Diabetes Survey. Lancet 2: 530–533.

    Article  PubMed  CAS  Google Scholar 

  40. Nathan DM, Rosenbaum C, Protasowicki VD (1987) Single-void urine samples can be used to estimate quantitative microalbuminuria. Diabetes Care 10: 414–418.

    Article  PubMed  CAS  Google Scholar 

  41. Mogensen CE, Vestbo E, Poulsen PL, et al. (1995) Microalbuminuria and potential confounders: a review and some observations on variability of urinary albumin excretion. Diabetes Care 18: 572–581.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reiser, I.W., Porush, J.G. (2001). Evaluation of Renal Function and Proteinuria. In: Weber, M.A. (eds) Hypertension Medicine. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-008-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-008-7_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5446-9

  • Online ISBN: 978-1-59259-008-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics