Skip to main content

Regulation of Gene Expression by Nitric Oxide

  • Chapter
  • 159 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Nitric oxide (NO·) and related chemical species have emerged as ubiquitous cellular messengers. This smallest known mammalian biological signaling molecule plays a crucial role in human physiology. NO· is synthesized by the enzyme nitric oxide synthase (NOS) and can assume several chemical forms, each of which has its own reactive specificity toward cellular targets. The resulting interaction initiates many signaling events in the cell. NO·-induced signal transduction and gene expression influences various physiological events including vasodilation, cytotoxicity, inflammation, and synaptic plasticity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang PL, Huang Z, Mashimo H, Block KD, Moskowitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 196, 197.

    Google Scholar 

  2. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 1998; 101: 731–736.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 1988; 153: 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  4. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Synder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714–718.

    Article  PubMed  CAS  Google Scholar 

  5. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992; 89: 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  6. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225–228.

    Article  PubMed  CAS  Google Scholar 

  7. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls and controls. Cell 1994; 78: 915–918.

    Article  PubMed  CAS  Google Scholar 

  8. Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 1995;270:14, 582–14, 586.

    Google Scholar 

  9. Han X, Kobzik L, Balligand JL, Kelly RA, Smith TW. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res 1996; 78: 998–1008.

    Article  PubMed  CAS  Google Scholar 

  10. Seki T, Hagiwara H, Naruse K, Kadowaki M, Kashiwagi M, Demura H, et al. In situ identification of messenger RNA of endothelial type nitric oxide synthase in rat cardiac myocytes. Biochem Biophys Res Commun 1996; 218: 601–605.

    Article  PubMed  CAS  Google Scholar 

  11. Balligand JL, Smith TW. Molecular regulation of NO synthase in the heart. In: Shah AM, Lewis MS, eds. Endothelial Modulation of Cardiac Contraction. Harwood Academic Publishers, London, UK, 1997, pp. 53–70.

    Google Scholar 

  12. Wei C, Jiang S, Lust JA, Daly RC, MacGregor CG. Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clin Proc 1996; 71: 346–350.

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt HH, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 1992; 40: 1439–1456.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka K, Hassall CJ, Burnstock G. Distribution of intracardiac neurones and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. Cell Tissue Res 1993; 273: 293–300.

    Article  PubMed  CAS  Google Scholar 

  15. Schwarz P, Diem R, Dun NJ, Forstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995; 77: 841–848.

    Article  PubMed  CAS  Google Scholar 

  16. Schulz R, Nava E, Moncada S. Induction and potential biological relevance of a Cat+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 1992; 105: 575–580.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts AB, Roche NS, Winokur TS, Burmester JK, Sporn MB, Nathan CF. Role of nitric oxide in antagonistic effects of transforming growth factor ß and interleukin-1 ß on the beating rate of cultured cardiac myocytes. J Clin Invest 1992; 89: 2045–2062.

    Google Scholar 

  18. Shindo T, Ikeda U, Ohkawa F, Kawahara Y, Yokoyama M, Shimada K. Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 1995; 29: 813–819.

    PubMed  CAS  Google Scholar 

  19. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994;269:13, 725–13, 728.

    Google Scholar 

  20. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997; 11: 118–124.

    PubMed  CAS  Google Scholar 

  21. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  22. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE. Oxidation of NO in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci USA 1993; 90: 8103–8107.

    Article  PubMed  CAS  Google Scholar 

  23. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 1991; 41: 485–490.

    Article  PubMed  CAS  Google Scholar 

  24. Bredt DS, Synder SH. Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem 1994; 63: 175–195.

    Article  PubMed  CAS  Google Scholar 

  25. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.

    Article  PubMed  CAS  Google Scholar 

  26. Lander HM, Milbank AJ, Tauras JM, Hajjar DP, Hempstead BL, Schwartz GD, et al. Redox regulation of cell signalling. Nature 1996; 381: 380, 381.

    Google Scholar 

  27. Xu L, Eu JP, Meissner G, Stamler JS. Activation of cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279: 234–237.

    Article  PubMed  CAS  Google Scholar 

  28. Bauer JA, Booth BP, Fung HL. Nitric oxide donors: biochemical pharmacology and therapeutics. Adv Pharmacol 1995; 34: 361–381.

    Article  PubMed  CAS  Google Scholar 

  29. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051–3064.

    PubMed  CAS  Google Scholar 

  30. Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1993; 1178: 153–175.

    Article  PubMed  CAS  Google Scholar 

  31. Gerzer R, Bohme E, Hofmann F, Schultz G. Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 1981; 132: 71–74.

    Article  PubMed  CAS  Google Scholar 

  32. Ignarro LJ, Kadowitz Pi. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 1985; 25: 171–191.

    Article  PubMed  CAS  Google Scholar 

  33. Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium; interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92: 639–646.

    Article  PubMed  CAS  Google Scholar 

  34. Ignarro LJ, Wood KS, Wolin MS. Regulation of purified soluble guanylate cyclase by porphyrins and metalloporphrins: a unifying concept. Adv Cyclic Nucleotide Protein Phosphorylation Res 1984; 17: 267–274.

    PubMed  CAS  Google Scholar 

  35. Forstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol 1995; 352: 351–364.

    Article  PubMed  CAS  Google Scholar 

  36. Buga GM, Griscavage JM, Rogers NE, Ignarro LJ. Negative feedback regulation of endothelial cell function by nitric oxide. Circ Res 1993; 73: 808–812.

    Article  PubMed  CAS  Google Scholar 

  37. Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with their heme prosthetic group. Role of tetrahydrobiopterin in modulating inhibitory action of nitric oxide. J Biol Chem 1994;269:21, 644–21, 649.

    Google Scholar 

  38. Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ, Stuehr DJ. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 1995;270:22, 997–23, 006.

    Google Scholar 

  39. Hurshman AR, Marletta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry 1995; 34: 5627–5634.

    Article  PubMed  CAS  Google Scholar 

  40. Butler AR, Glidewell C, Li MS. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988; 32: 335–392.

    Article  CAS  Google Scholar 

  41. Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:29, 409–29, 415.

    Google Scholar 

  42. Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993; 7: 1124–1134.

    PubMed  CAS  Google Scholar 

  43. Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 1993; 12: 3643–3649.

    PubMed  CAS  Google Scholar 

  44. Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, Werner-Felmayer G, et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 1993; 12: 3651–3657.

    PubMed  CAS  Google Scholar 

  45. Jaffrey SR, Cohen NA, Rouault TA, Klausner RD, Synder SH. The iron-responsive element binding protein: a target for synaptic actions of nitric oxide. Proc Natl Acad Sci USA 1994;91:12, 994–12, 998.

    Google Scholar 

  46. Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA. Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nat Struct Biol 1998; 5: 267–271.

    Article  PubMed  CAS  Google Scholar 

  47. Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, et al. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 1992; 8: 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  48. Luperchio S, Tamir S, Tannenbaum SR. NO-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Radic Biol Med 1996; 21: 513–519.

    Article  PubMed  CAS  Google Scholar 

  49. Williams DLH. 5-nitrosation and the reactions of S-nitrosocompounds. Chem Soc Rev 1985; 14: 171–196.

    Article  CAS  Google Scholar 

  50. McDonald LJ, Moss J. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 1993; 90: 6238–6241.

    Article  PubMed  CAS  Google Scholar 

  51. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89: 444–448.

    Article  PubMed  CAS  Google Scholar 

  52. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 1995;270:28, 158–28, 164.

    Google Scholar 

  53. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991; 266: 4244–4250.

    PubMed  CAS  Google Scholar 

  54. Wu M, Pritchard KA Jr, Kaminski PM, Fayngersh RP, Hintze TH, Wolin MS. Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. Am J Physiol 1994; 266: H2108 - H2113.

    PubMed  CAS  Google Scholar 

  55. Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer Metastasis Rev 1994; 13: 67–89.

    Article  PubMed  CAS  Google Scholar 

  56. Overbeck AF, Brtva TR, Cox AD, Graham SM, Huff SY, Khosravi-Far R, et al. Guanine nucleotide exchange factors: activators of Ras superfamily proteins. Mol Reprod Dev 1995; 42: 468–476.

    Article  PubMed  CAS  Google Scholar 

  57. Denhardt DT. Signal transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for miltiplex signalling. Biochem J 1996; 318: 729–747.

    PubMed  CAS  Google Scholar 

  58. Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A. Nitric oxide-stimulated guanine nucleotide exchange on p21`as. J Biol Chem 1995; 270: 7017–7020.

    Article  PubMed  CAS  Google Scholar 

  59. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, et al. A molecular redox switch on p21’ Structural bases for the nitric oxide-p21`as interaction. J Biol Chem 1997; 272: 4323–4326.

    Article  PubMed  CAS  Google Scholar 

  60. Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 1996;271:19, 705–19, 709.

    Google Scholar 

  61. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger HJ, et al. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinasein2 activation in postcapillary endothelium. J Biol Chem 1998; 273: 4220–4226.

    Article  PubMed  CAS  Google Scholar 

  62. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 1995; 20: 117–122.

    Article  PubMed  CAS  Google Scholar 

  63. Lander HM, Sehajpal P, Levine DM, Novogrodsky A. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J Immunol 1993; 150: 1509–1516.

    PubMed  CAS  Google Scholar 

  64. Lander HM, Ogiste JS, Teng KK, Novogrodsky A. p21’as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 1995;270:21, 195–21, 198.

    Google Scholar 

  65. Coronado R, Morrissette J, Sukhareva M, Vaughan DM. Structure and function of ryanodine receptors. Am J Physiol 1994; 266: C1485 - C1504.

    PubMed  CAS  Google Scholar 

  66. Abramson JJ, Salama G. Sulfhydryl oxidation and Cat+release from sarcoplasmic reticulum. Mol Cell Biochem 1988; 82: 81–84.

    Article  PubMed  CAS  Google Scholar 

  67. Oba T, Yamaguchi M, Wand S, Johnson JD. Modulation of the Cat+ channel voltage sensor and excitation-contraction coupling by silver. Biophys J 1992; 63: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  68. Stoyanovsky D, Murphy T, Anno PR, Kim YM, Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 1997; 21: 19–29.

    Article  PubMed  CAS  Google Scholar 

  69. Lijnen HR, Collen D. Endothelium in hemostasis and thrombosis. Prog Cardiovasc Dis 1997; 39: 343–350.

    Article  PubMed  CAS  Google Scholar 

  70. Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, et al. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 1992; 89: 8087–8091.

    Article  PubMed  CAS  Google Scholar 

  71. Delyani JA, Nossuli TO, Scalia R, Thomas G, Garvey JS, Lefer AM. S-nitrosylated tissue-type plasminogen activator protects against myocardial ischemia/reperfusion injury in cats: role of endothelium. J Pharmacol Exp Ther 1996; 279: 1174–1180.

    PubMed  CAS  Google Scholar 

  72. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853.

    Article  PubMed  CAS  Google Scholar 

  73. Mohr S, Stamler JS, Brune B. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 1996; 271: 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  74. Bereta J, Bereta M. Stimulation of glyceraldehyde-3-phosphate dehydrogenase mRNA levels by endogenous nitric oxide in cytokine-activated endothelium. Biochem Biophys Res Commun 1995; 217: 363–369.

    Article  PubMed  CAS  Google Scholar 

  75. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

    Article  PubMed  CAS  Google Scholar 

  76. Mohr S, Zech B, Lapetina EG, Brune B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun 1997; 238: 387–391.

    Article  PubMed  CAS  Google Scholar 

  77. Li J, Billiar TR. Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 1997; 240: 419–424.

    Article  PubMed  CAS  Google Scholar 

  78. Baldwin AS Jr. The NF-icB and IKB proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Article  PubMed  CAS  Google Scholar 

  79. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994; 269: 4705–4708.

    PubMed  CAS  Google Scholar 

  80. Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP, et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994; 269: 6765–6772.

    PubMed  CAS  Google Scholar 

  81. Park SK, Lin HL, Murphy S. Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kappaB binding to DNA. Biochem J 1997; 322: 609–613.

    PubMed  CAS  Google Scholar 

  82. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. Inhibition of NF-KB DNA binding by nitric oxide. Nucleic Acids Res 1996; 24: 2236–2242.

    Article  PubMed  CAS  Google Scholar 

  83. Ghosh G, van Duyne G, Ghosh S, Sigler PB. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 1995; 373: 303–310.

    Article  PubMed  CAS  Google Scholar 

  84. Muller CW, Rey FA, Sodeoka M, Verdine GL, Harrison SC. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 1995; 373: 311–317.

    Article  PubMed  CAS  Google Scholar 

  85. Togashi H, Sasaki M, Frohman E, Taira E, Ratan RR, Dawson TM, et al. Neuronal (type I) nitric oxide synthase regulates nuclear factor (B activity and immunologic (type II) nitric oxide synthase expression. Proc Natl Acad Sci USA 1997; 94: 2676–2680.

    Article  PubMed  CAS  Google Scholar 

  86. Abate C, Patel L, Rauscher FJ 3rd, Curan T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  87. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 1992; 11: 653–665.

    PubMed  CAS  Google Scholar 

  88. Nikitovic D, Holmgren A, Spyrou G. Inhibition of AP-1 DNA binding by nitric oxide involving conserved cysteine residues in Jun and Fos. Biochem Biophys Res Commun 1998; 242: 109–112.

    Article  PubMed  CAS  Google Scholar 

  89. Tabuchi A, Oh E, Taoka A, Sakurai H, Tsuchiya T, Tsuda M. Rapid attenuation of AP-1 transcriptional factors associated with nitric oxide (NO)-mediated neuronal death. J Biol Chem 1996;271:31, 061–31, 067.

    Google Scholar 

  90. Pilz RB, Suhasini M, Idriss S, Meinkoth JL, Boss GR. Nitric oxide and cGMP analogs activate transcription from AP-1-responsive promoters in mammalian cells. FASEB J 1995; 9: 552–558.

    PubMed  CAS  Google Scholar 

  91. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221–226.

    Article  PubMed  CAS  Google Scholar 

  92. Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998; 391: 169–173.

    Article  PubMed  CAS  Google Scholar 

  93. Matthews JS, McWilliams PJ, Key BJ, Keen M. Inhibition of prostacyclin release from cultured endothelial cells by nitrovasodilator drugs. Biochim Biophys Acta 1995; 1269: 237–242.

    Article  PubMed  Google Scholar 

  94. Habib A, Bernard C, Lebret M, Creminon C, Esposito B, Tedgui A, et al. Regulation of the expression of cyclooxygenase-2 by nitric oxide in rat peritoneal macrophages. J Immunol 1997; 158: 3845–3851.

    PubMed  CAS  Google Scholar 

  95. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993; 90: 7240–7244.

    Article  PubMed  CAS  Google Scholar 

  96. Hajjar DP, Lander HM, Pearce SF, Upmacis RK, Pomerantz KB. Nitric oxide enhances prostaglandin-H synthase-1 activity by a heme-independent mechanism: evidence implicating nitrosothiols. J Am Chem Soc 1995; 117: 3340–3346.

    Article  CAS  Google Scholar 

  97. Salvemini D Regulation of cyclooxygenase enzyme by nitric oxide. Cell Mol Life Sci 1997; 53: 576–582.

    Article  PubMed  CAS  Google Scholar 

  98. Tsai AL, Wei C, Kulmacz RJ. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys 1994; 313: 367–372.

    Article  PubMed  CAS  Google Scholar 

  99. Karthein R, Nastainczyk W, Ruf HH. EPR study of ferric native prostaglandin H synthase and its ferrous NO derivative. Eur J Biochem 1987; 166: 173–180.

    Article  PubMed  CAS  Google Scholar 

  100. Lowenstein CJ, Dinerman JL, Synder SH. Nitric oxide: a physiologic messenger. Ann Intern Med 1994; 120: 227–237.

    PubMed  CAS  Google Scholar 

  101. Yang X, Chowdhury N, Cai B, Brett J, Marboe C, Sciacca RR, et al. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 1994; 94: 714–721.

    Article  PubMed  CAS  Google Scholar 

  102. Suzuki H, Wildhirt SM, Dudek RR, Narayan KS, Bailey AH, Bing RJ. Induction of apoptosis in myocardial infarction and its possible relationship to nitric oxide synthase in macrophages. Tissue Cell 1996; 28: 89–97.

    Article  PubMed  CAS  Google Scholar 

  103. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PF, Trindade PT, et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996; 93: 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  104. Lancaster JR Jr, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA. EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem 1992;267:10, 994–10, 998.

    Google Scholar 

  105. Dusting GJ. Nitric oxide in the coronary artery disease: roles in atherosclerosis, myocardial reperfusion and heart failure. EXS 1996; 76: 33–55.

    PubMed  CAS  Google Scholar 

  106. Bredt DS, Synder SH. Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem 1994; 63: 175–195.

    Article  PubMed  CAS  Google Scholar 

  107. Szabo C, Zingarelli B, Salzman AL. Role of poly-ADP ribosyl-transferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res 1996; 78: 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  108. Ross R. The pathogenesis of artherosclerosis: a perspective of the 1990s. Nature 1993; 362: 801–809.

    Article  PubMed  CAS  Google Scholar 

  109. Schwartz SM, deBlois D, O’Brien ER. The intima: soil for artherosclerosis and restenosis. Cire Res 1995; 77: 445–465.

    Article  CAS  Google Scholar 

  110. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J. Induction of the cyclin-dependent kinase inhibitor p21 (sdil/cipl/Wafl) by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem 1997;272:10, 050–10, 057.

    Google Scholar 

  111. Okazaki M, Hu ZW, Fujinaga M, Hoffman BB. Alphai adrenergic receptor activation of proto-oncogene expression in arterial smooth muscle. Recept Signal Transduct 1996; 6: 165–178.

    PubMed  CAS  Google Scholar 

  112. van der Zee R, Murohara T, Luo Z, Zollman F, Passeri J, Lekutat C, et al. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 1997; 95: 1030–1037.

    Article  PubMed  Google Scholar 

  113. Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 1997; 3: 879–886.

    Article  PubMed  CAS  Google Scholar 

  114. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/ FIK and FIt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 1995; 95: 1798–1807.

    Article  PubMed  CAS  Google Scholar 

  115. Kourembanas S, McQuillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 1993; 92: 99–104.

    Article  PubMed  CAS  Google Scholar 

  116. De Caterina R, Libby P, Peng HB,Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68.

    Article  PubMed  Google Scholar 

  117. Peng H, Libby P, Liao JK. Induction and stabilization of IxBa by nitric oxide mediates inhibition of NFiB. J Biol Chem 1995;270:14, 214–14, 219.

    CAS  Google Scholar 

  118. Villarete LH, Remick DG. Nitric oxide regulation of IL-8 expression in human endothelial cells. Biochem Biophys Res Commun 1995; 211: 671–676.

    Article  PubMed  CAS  Google Scholar 

  119. Sedmak DD, Knight DA, Vook NC, Waldman JW. Divergent patterns of ELAM-1, ICAM-1 and V CAM-1 expression in cytomegalovirus-infected endothelial cells. Transplantation 1994; 58: 1379–1385.

    PubMed  CAS  Google Scholar 

  120. Faruqi TR, Erzurum SC, Kaneko Fr, Dicorleto PE. Role of nitric oxide in poly(I-C)-induced endothelial cell expression of leukocyte adhesion molecules. Am J Physiol 1997; 273: 2490–2497.

    Google Scholar 

  121. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 1997; 17: 1846–1858.

    Article  PubMed  CAS  Google Scholar 

  122. Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265: H176 - H182.

    PubMed  CAS  Google Scholar 

  123. Radomski MW, Palmer RM, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 1987; 148: 1482–1489.

    Article  PubMed  CAS  Google Scholar 

  124. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–4655.

    Article  PubMed  CAS  Google Scholar 

  125. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991; 11: 254–260.

    CAS  Google Scholar 

  126. Tsao PS, Lewis NP, Alpert S, Cooke JP. Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation 1995; 92: 3513–3519.

    Article  PubMed  CAS  Google Scholar 

  127. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995; 76: 980–986.

    Article  PubMed  CAS  Google Scholar 

  128. Grocott-Mason R, Fort S, Lewis MJ, Shah AM. Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 1994; 266: H1699 - H1705.

    PubMed  CAS  Google Scholar 

  129. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TM. Role of endothelium-derived nitric oxide in the modulation of canine myocardial respiration in vitro. Implications for the development of heart failure. Circ Res 1996; 79: 381–387.

    Article  PubMed  CAS  Google Scholar 

  130. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 1993; 90: 347–351.

    Article  PubMed  CAS  Google Scholar 

  131. Flesch M, Kilter H, Cremers B, Lenz O, Sudkamp M, Kuhn-Regnier F, et al. Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 1997; 281: 1340–1349.

    PubMed  CAS  Google Scholar 

  132. Schobersberger W, Friedrich F, Hoffmann G, Volkl H, Diet“ P. Nitric oxide donors inhibit spontaneous depolarizations by L-type Ca2+ currents in alveolar epithelial cells. Am J Physiol 1997; 272: L1092 - L1097.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deora, A.A., Lander, H.M. (2000). Regulation of Gene Expression by Nitric Oxide. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics