Skip to main content

Thrombotic Disorders and Nitric Oxide Insufficiency

  • Chapter
Nitric Oxide and the Cardiovascular System

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 160 Accesses

Abstract

Thrombus formation within a coronary vessel is the precipitating event in myocardial infarction and unstable angina as shown in angiographic (1) and pathologic (2) studies. The angiographic severity of coronary stenoses does not adequately predict sites of subsequent acute coronary syndromes. For this reason, rupture of atheromatous plaque in relatively mildly stenosed vessels and subsequent thrombus formation is believed to underlie the majority of acute coronary syndromes (3,4). Both superficial and intimai injury caused by endothelial denudation and deep intimal injury caused by plaque rupture expose collagen and von Willebrand factor to platelets (4). Platelets then adhere directly to collagen or indirectly via the binding of von Willebrand factor to glycoprotein (GP) Ib/IX and to the matrix. Local platelet activation by tissue factor-mediated thrombin generation or by collagen stimulates further thrombus formation and additional platelet recruitment by supporting cell-surface thrombin formation and releasing adenosine diphosphate (ADP), serotonin, and thromboxane A2 (5). Thrombus forms as platelets aggregate via the binding of bivalent fibrinogen to GPIIb/IIIa. In support of these mechanisms, increased platelet derived thromboxane and prostaglandin metabolites have been detected in patients with acute coronary syndromes (6). The importance of platelet activation in acute coronary syndromes is further supported by the clear clinical benefit of treatment with aspirin for both primary and secondary prevention strategies (7,8). In addition, patients with coronary atherosclerosis have impaired bioactivity of endothelial nitric oxide (NO·), a known vasodilator and inhibitor of platelet function. In this chapter, the role of NO· insufficiency in experimental and clinical thrombotic disorders is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902.

    Article  PubMed  CAS  Google Scholar 

  2. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699–708.

    Article  PubMed  CAS  Google Scholar 

  3. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983; 50: 127–134.

    Article  PubMed  CAS  Google Scholar 

  4. Davies MJ, Thomas AC. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 1984; 310: 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  5. Santos MT, Valles J, Marcus Ai, Safier LB, Broekman J, Islam N, et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest 1991; 87: 571–580.

    Article  PubMed  CAS  Google Scholar 

  6. Fitzgerald DJ, Roy L, Catella F, FitzGerald A. Platelet activation in unstable coronary disease. N Engl J Med 1986; 315: 983–989.

    Article  PubMed  CAS  Google Scholar 

  7. The RISC Group. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet 1990; 336: 827–830.

    Article  Google Scholar 

  8. Antiplatelet Trialist Collaboration. Collaborative overview of randomised trials of antiplatelet therapy: 1: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J 1994; 308: 81–106.

    Article  Google Scholar 

  9. Radomski MW, Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost 1993; 70: 36–41.

    PubMed  CAS  Google Scholar 

  10. Wirthumer-Hocke C, Silberbauer K, Sinzinger H. Effect on nitroglycerin and other organic nitrates on the in vitro biosynthesis of arachidonic acid-metabolites in washed human platelets. Prostaglandins Leukot Med 1984; 15: 317–323.

    Article  Google Scholar 

  11. Negrescu EV, Sazonova LN, Baldenkov GN, Mazaev AV, Tkachuk VA. Relationship between the inhibition of receptor-induced increase in cytosolic free calcium concentration and the vasoldilator effects of nitrates in patients with congestive heart failure. Int J Cardiol 1990; 26: 175–184.

    Article  PubMed  CAS  Google Scholar 

  12. de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, et al. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 1992; 85: 2284–2290.

    Article  PubMed  Google Scholar 

  13. Radomski MW, Palmer RM, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 1987; 148: 1482–1489.

    Article  PubMed  CAS  Google Scholar 

  14. Stamler J, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies JP, et al. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 1989; 65: 789–795.

    Article  PubMed  CAS  Google Scholar 

  15. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Physiol 1990; 259: H804 - H812.

    PubMed  CAS  Google Scholar 

  16. Shultz PJ, Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest 1992; 90: 1718–1725.

    Article  PubMed  CAS  Google Scholar 

  17. Michelson AD, Benoit SE, Furman MI, Breckwoldt WL, Rohrer MJ, Barnard MR, et al. Effects of nitric oxide/endothelium-derived relaxing factor on platelet surface glycoproteins. Am J Physiol 1996; 270: H1640 - H1648.

    PubMed  CAS  Google Scholar 

  18. Mehta JL, Chen LY, Kone BC, Mehta P, Turner P. Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 1995; 125: 370–377.

    PubMed  CAS  Google Scholar 

  19. Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 1995; 57: 2049–2055.

    Article  PubMed  CAS  Google Scholar 

  20. Chen LY, Mehta JL. Variable effects of L-arginine analogs on L-arginine-nitric oxide pathway in human neutrophils and platelets may relate to different nitric oxide synthase isoforms. J Pharmacol Exp Therap 1996; 276: 253–257.

    CAS  Google Scholar 

  21. Simon DI, Stamler J, Loh E, Loscalzo J, Francis SA, Creager MA. Effect of nitric oxide synthase inhibition on bleeding time in humans. J Cardiovasc Pharmacol 1995; 26: 339–342.

    Article  PubMed  CAS  Google Scholar 

  22. Bodzenta-Lukaszyk A, Gabryelewicz A, Lukaszyk A, Bielawiec M, Konturek JW, Domschke W. Nitric oxide synthase inhibition and platelet function. Thromb Res 1994; 75: 667–672.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou Q, Hellermann GR, Solomonson LP. Nitric oxide release from resting human platelet. Thromb Res 1995; 77: 87–96.

    Article  PubMed  CAS  Google Scholar 

  24. Malinski T, Radomski MW, Taha Z, Moncada S. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun 1993; 194: 960–965.

    Article  PubMed  CAS  Google Scholar 

  25. Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 1990; 87: 5193–5197.

    Article  PubMed  CAS  Google Scholar 

  26. Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF Jr, Michelson A. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 1997; 100: 350–356.

    Article  PubMed  CAS  Google Scholar 

  27. Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5’monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 1987; 79: 170–174.

    Article  PubMed  CAS  Google Scholar 

  28. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491–497.

    Article  PubMed  CAS  Google Scholar 

  29. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan LD, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  30. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of symptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468–1474.

    Article  PubMed  CAS  Google Scholar 

  31. Folts JD, Stamler J, Loscalzo J. Intravenous nitroglycerin infusion inhibits periodic platelet thrombus formation in stenosed dog coronary arteries. Circulation 1991; 83: 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  32. Yao SH, Ober JC, Krishnaswami A, Ferguson JJ, Anderson HV, Golino P, et al. Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stensosed and endothelium-injured arteries. Circulation 1992; 86: 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  33. Stagliano N, Zhao W, Prado R, Dewanjee M, Ginsberg M, Dietrich W. The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 1997; 17: 1182–1190.

    Article  PubMed  CAS  Google Scholar 

  34. Waddington S, Cook HT, Reaveley D, Jansen A, Cattell V. L-arginine depletion inhibits glomerular nitric oxide synthesis and exacerbates rat nephrotoxic nephritis. Kidney Int 1996; 49: 1090–1096.

    Article  PubMed  CAS  Google Scholar 

  35. Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, oude Egbrink MG. Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterio Thromb Vasc Biol 1998; 18: 139–145.

    Article  CAS  Google Scholar 

  36. Bressler NM, Broekman MJ, Marcus AJ. Concurrent studies of oxygen consumption and aggregation in stimulated human platelets. Blood 1979; 53: 167–178.

    PubMed  CAS  Google Scholar 

  37. Burch J, Burch P. Glutathione disulfide production during arachidonic acid oxygenation in human platelets. Prostaglandins 1990; 39: 123–134.

    Article  PubMed  CAS  Google Scholar 

  38. Handin RI, Karabin R, Boxer GJ. Enhancement of platelet aggregation by superoxide anion. J Clin Invest 1987; 59: 959–965.

    Article  Google Scholar 

  39. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Rad Res Commun 1993; 18: 195–199.

    Article  CAS  Google Scholar 

  40. Calzada C, Verice E, Lagarde M. Decrease in platelet reduced glutathione increases lipoxygenase activity and decreases vitamin E Lipids 1991; 26: 696–699.

    CAS  Google Scholar 

  41. Meng YY, Trachtenburg J, Ryan US, Abendschein DR. Potentiation of endogenous nitric oxide with superoxide dismutase inhibits platelet-mediated thrombosis in injured stenotic arteries. J Am Coll Cardiol 1995; 25: 269–275.

    Article  PubMed  CAS  Google Scholar 

  42. Ikeda H, Koga Y, Oda T, Kuwano K, Nakayama H, Ueno T, et al. Free oxygen radicals contribute to platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries. J Am Coll Cardiol 1994; 24: 1749–1756.

    Article  PubMed  CAS  Google Scholar 

  43. Freedman JE, Sauter R, Battinelli E, Ault K, Knowles C, Huang P, et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOS3 gene. Circulation 1998; 98: I - 4.

    Article  Google Scholar 

  44. Adams MR, Forsyth CJ, Jessup W, Robinson J, Celermajer DS. Oral L-arginine inhibits platelet aggregation but does not enhance endothelium-dependent dilation in healthy young men. J Am Coll Cardiol 1995; 26: 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  45. Freedman JE, Ting B, Hankin B, Loscalzo J, Keaney JF Jr, Vita JA. Impaired platelet production of nitric oxide in patients with unstable angina. Circulation 1998; 98: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  46. Langford EJ, Wainwright RJ, Martin J. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterio Thromb Vasc Biol 1996; 16: 51–55.

    Article  CAS  Google Scholar 

  47. Minamino T, Kitakaze M, Sato H, Asanuma H, Funaya H, Koretsune Y, et al. Plasma levels of nitrite/ nitrate and platelet cGMP levels are decreased in patients with atrial fibrillation. Arterio Thromb Vasc Biol 1997; 17: 3191–3195.

    Article  CAS  Google Scholar 

  48. Noris M, Morigi M, Donadelli R, Aiello S, Foppolo M, Todeschini M, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 1995; 76: 536–543.

    Article  PubMed  CAS  Google Scholar 

  49. Clark BA, Ludmir J, Epstein FH, Alvarez J, Tavara L, Bazul J, et al. Urinary cyclic GMP, endothelin, and prostaglandin E2 in normal pregnancy and preeclampsia. Am J Perinat 1997; 14: 559–562.

    Article  CAS  Google Scholar 

  50. Noris M, Ruggenenti P, Todeschini M, Figliuzzi M, Macconi D, Zoja, C, et al. Increased nitric oxide formation in recurrent thrombotic microangiopathies: a possible mediator of microvasclar injury. Am J Kidney Dis 1996; 27: 790–796.

    Article  PubMed  CAS  Google Scholar 

  51. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546–2551.

    Article  PubMed  CAS  Google Scholar 

  52. Buczynski A, Wachowicz B, Kedziora-Konatowska K, Tkaczewski W, Kedziora J. Changes in antioxidant enzyme activities, aggregability and malonyldialdehyde concentration in blood platelets from patients with coronary heart disease. Atherosclerosis 1993; 100: 223–228.

    Article  PubMed  CAS  Google Scholar 

  53. Freedman JE, Frei B, Welch GN, Loscalzo J. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J Clin Invest 1995; 96: 394–400.

    Article  PubMed  CAS  Google Scholar 

  54. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996; 97: 979–987.

    Article  PubMed  CAS  Google Scholar 

  55. Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, et al. Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterio Thromb Vase Biol 1999; 19: 2017–2023.

    Article  CAS  Google Scholar 

  56. Salonen JT, Alfthan G, Huttenen JK, Pikkarainen J, Puska P. Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 1982; 2: 175–179.

    Article  PubMed  CAS  Google Scholar 

  57. Rimm E, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willet WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993; 328: 1450–1456.

    Article  PubMed  CAS  Google Scholar 

  58. Freedman J, Li L, Vita J, Keaney JF Jr. Alpha-tocopherol levels are associated with platelet release of nitric oxide. J Am Coll Cardiol 1999;Abstract, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freedman, J.E., Loscalzo, J. (2000). Thrombotic Disorders and Nitric Oxide Insufficiency. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics