Skip to main content

The Biological Chemistry of Nitric Oxide

  • Chapter
  • 165 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Nitric oxide (NO·) is a heterodiatomic free radical that can participate in a wide range of biochemically relevant reactions to evoke a panoply of biological responses. In order to understand the biochemistry of NO·, we must first consider its chemistry. This introductory chapter provides an overview of the relevant chemistry of NO· and its derivative biochemical reactions, both with respect to normal biological actions and pathophysiological effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dean JA. Table 10–17: molecular elevation of the boiling point (ebullioscopic constants). In: Dean JA, ed. Lange’s Handbook of Chemistry ( 13th ed. ). McGraw-Hill, New York, 1985, pp. 10–73.

    Google Scholar 

  2. Armor JN. Influence of pH and ionic strength upon solubility of nitric oxide in aqueous solution. J Chem Eng Data 1974; 19: 82–84.

    Article  CAS  Google Scholar 

  3. Gaily JA, Montague PR, Reeke GN Jr, Edelman GM. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990; 87: 3547–3551.

    Article  Google Scholar 

  4. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharm Rev 1991; 43: 109–142.

    PubMed  CAS  Google Scholar 

  5. Stanbury DM. Reduction potentials involving inorganic free radicals in aqueous solution. Adv Org Chem 1989; 33: 69–138.

    CAS  Google Scholar 

  6. Cotton FA, Wilkinson G. The chemistry of the main group elements. In: Advanced Organic Chemistry, 5th ed. Wiley, New York, 1988, pp. 585–597.

    Google Scholar 

  7. Ford PC, Wink DA, Stanbury DM. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 1993; 326: 1–3.

    Article  PubMed  CAS  Google Scholar 

  8. Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1993; 6: 23–27.

    Article  PubMed  CAS  Google Scholar 

  9. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 1994; 269: 5881–5883.

    PubMed  CAS  Google Scholar 

  10. Lewis RS, Deen WM. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 1994; 7: 568–574.

    Article  PubMed  CAS  Google Scholar 

  11. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Rad Res Commun 1993; 18: 195–199.

    Article  CAS  Google Scholar 

  12. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992; 5: 834–842.

    Article  PubMed  CAS  Google Scholar 

  13. Uppu RM, Squadrito GL, Pryor WA. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys 1996; 327: 335–343.

    Article  PubMed  CAS  Google Scholar 

  14. Pryor WA, Lemercier JN, Zhang H, Uppu RM, Squadrito GL. The catalytic role of carbon dioxide in the decomposition of peroxynitrite. Free Rad Biol Med 1997; 23: 331–338.

    Article  PubMed  CAS  Google Scholar 

  15. Padmaja S, Huie RE. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 1993; 195: 539–544.

    Article  PubMed  CAS  Google Scholar 

  16. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994; 269: 26066–26075.

    PubMed  CAS  Google Scholar 

  17. Nappi AJ, Vass E. Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochim Biophys Acta 1998; 1380: 55–63.

    Article  PubMed  CAS  Google Scholar 

  18. Buxton BF, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons. Hydrogen atoms and hydroxyl radicals in aqueous solution. J Phys Chem Ref Data 1988; 17: 513–886.

    Article  CAS  Google Scholar 

  19. Wink DA, Ford PC. Nitric oxide reactions important to biological systems: a survey of some kinetics investigations. Methods 1995; 7: 14–20.

    Article  CAS  Google Scholar 

  20. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 1995; 270: 28158–28164.

    Article  PubMed  CAS  Google Scholar 

  21. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89: 444–448.

    Article  PubMed  CAS  Google Scholar 

  22. Stamler JS, Jaraki O, Osborne JA, Simon DI, Keaney JF Jr, Vita JA, Singel DJ, Valeri CR, Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 1992; 89: 7674–7677.

    Article  PubMed  CAS  Google Scholar 

  23. Scharfstein JS, Keaney JF Jr, Slivka A, Welch GN, Vita JA, Stamler JS, Loscalzo J. In vivo transfer of nitric oxide between a plasma protein-bound reservoir and low molecular weight thiols. J Clin Invest 1994; 94: 1432–1439.

    Article  PubMed  CAS  Google Scholar 

  24. Pryor WA, Church DF, Govindan CK, Crank G. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 1982; 47: 156–159.

    Article  CAS  Google Scholar 

  25. DeMaster EG, Quast BJ, Redfern B, Nagasawa HT. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry 1995; 34: 11494–11499.

    Article  PubMed  CAS  Google Scholar 

  26. Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, Lipton SA. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 1992; 8: 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  27. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853.

    Article  PubMed  CAS  Google Scholar 

  28. Wink DA, Cook JA, Kim SY, Vodovotz Y, Pacelli R, Krishna MC, Russo A, Mitchell JB, Jourd’heuil D, Miles AM, Grisham MB. Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress. J Biol Chem 1997; 272: 11147–11151.

    Article  PubMed  CAS  Google Scholar 

  29. Gow AJ, Buerk DG, Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 1997; 272: 2841–2845.

    Article  PubMed  CAS  Google Scholar 

  30. Boese M, Mordvintcev PI, Vanin AF, Busse R, Mulsch A. S-nitrosation of serum albumin by dinitrosyliron complex. J Biol Chem 1995; 270: 29244–29249.

    Article  PubMed  CAS  Google Scholar 

  31. Mirvish SS. Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicol Appl Pharm 1975; 31: 325–351.

    Article  CAS  Google Scholar 

  32. Challis BC, Fernandes MH, Glover BR, Latif F. Formation of diazopeptides by nitrogen oxides. IARC Sci Pub 1987; 84: 308–314.

    Google Scholar 

  33. Ridd JH. Diffusion control and pre-association of nitrosation, nitration and halogenation. Adv Phys Org Chem 1978; 16: 1–49.

    Article  CAS  Google Scholar 

  34. Zhang YY, Xu AM, Nomen M, Walsh M, Keaney JF Jr, Loscalzo J. Nitrosation of tryptophan residue(s) in serum albumin and model dipeptides. Biochemical characterization and bioactivity. J Biol Chem 1996; 271: 14271–14279.

    Article  PubMed  CAS  Google Scholar 

  35. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  36. Wayland BB, Olson LW. Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins. J Am Chem Soc 1974; 96: 6037–6041.

    Article  PubMed  CAS  Google Scholar 

  37. Jameson GB, Ibers JA. Biological and synthetic dioxygen carriers. In: Bertini I, Gray HB, Lippard SJ, Valentine JS, eds. Bioinorganic Chemistry. University Science Books, Mill Valley, CA, 1994, pp. 167–252.

    Google Scholar 

  38. Traylor TG, Sharma VS. Why NO? Biochemistry 1992; 31: 2847–2849.

    Article  CAS  Google Scholar 

  39. Brucker EA, Olson JS, Ikeda-Saito M, Phillips GN Jr. Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 1998; 30: 352–356.

    Article  PubMed  CAS  Google Scholar 

  40. Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Chem 1981; 14: 351–358.

    CAS  Google Scholar 

  41. Henry Y, Ducrocq C, Drapier JC, Servent D, Pellat C, Guissani A. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 1991; 20: 1–15.

    Article  PubMed  CAS  Google Scholar 

  42. Vanin AF. [EMR identification of ferro-cysteine complexes in biological systems.] Identifikatsiia metodom EPR kompleksov dvukhvalentnogo zheleza s tsisteinom v biologischeskihk sistemakh. Biokhimiia 1967; 32: 277–282.

    PubMed  CAS  Google Scholar 

  43. Drapier JC. Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods 1997; 11: 319–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loscalzo, J. (2000). The Biological Chemistry of Nitric Oxide. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics