Skip to main content

The Unstable Plaque

Implications and Opportunities for Prevention

  • Chapter
Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 141 Accesses

Abstract

Over this past decade, clinical trials have added to our understanding of the pathophysiology and prevention of coronary atherosclerosis. Evidence is accumulating that cholesterol lowering has immediate consequences that may favorably affect the coronary atheroma and subsequent coronary events. Intravascular ultrasound provides a new modality by which to better understand the atheroma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenberg DA. Cholesterol lowering in the management of coronary artery disease: the clinical implications of recent trials. Am J Med 1998; 104 (2A): 2S–5S.

    Article  PubMed  CAS  Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Summary of the second report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). JAMA 1993; 269: 3015–3023.

    Google Scholar 

  3. Kannel WB. The Framingham Study: An epidemiological investigation of cardiovascular disease, Section 30. Some characteristics related to the incidence of cardiovascular disease and death: the Framingham Study. 18-year follow-up. Dept. of Health, Education and Welfare, Washington, DC, Publication No. (NIH) 74–599, 1974.

    Google Scholar 

  4. Kannel WB. Range of serum cholesterol values in the population developing coronary artery disease. Am J Cardiol 1995; 76: 69C–77C.

    Article  PubMed  CAS  Google Scholar 

  5. Kannel WB, Castelli WP, Gordon T, et al. Lipoprotein cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham Heart Study. Ann Int Med 1979; 90: 85–91.

    PubMed  CAS  Google Scholar 

  6. Report of the National Cholesterol Education Program on detection, evaluation, and treatment of high blood cholesterol in adults. Arch Int Med 1988; 148: 36–39.

    Google Scholar 

  7. Gould AL, Rossouw JE, Santanello NC, Heyse JF, Furberg CD, et al. Cholesterol reduction yields clinical benefit: a new look at old data. Circulation 1995; 91: 2274–2282.

    Article  PubMed  CAS  Google Scholar 

  8. Sempos CT, Cleeman JI, Carrol MD, et al. Prevalence of high blood cholesterol among US adults. An update based on guidelines from the second report of the National Cholesterol Education Program Adult Treatment Panel. JAMA 1993; 269: 3009–3014.

    Article  PubMed  CAS  Google Scholar 

  9. Hunninghake DB. Therapeutic efficacy of the lipid-lowering armamentarium: the clinical benefits of aggressive lipid-lowering therapy. Am J Cardiol 1998; 104 (2A): 9S–13S.

    CAS  Google Scholar 

  10. Holme I. Cholesterol reduction and its impact on coronary artery disease and total mortality. Am J Cardiol 1995; 76: 10C–17C.

    Article  PubMed  CAS  Google Scholar 

  11. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4s). Lancet 1994; 334: 1383–1389.

    Google Scholar 

  12. Bertolini S, Bon GB, Campbell LM, et al. Efficacy and safety of atorvastatin compared to pravastatin in patients with hypercholesterolemia. Atherosclerosis 1997; 130: 191–197.

    Article  PubMed  CAS  Google Scholar 

  13. Tonkin AM. Management of the long-term intervention with pravastatin in ischaemic disease (LIPID) study after the Scandinavian simvastatin survival study (4s). Am J Cardiol 1995; 76: 107C–112C.

    Article  PubMed  CAS  Google Scholar 

  14. Gotto AM Jr. Risk factor modification: rationale for management of dyslipidemia. Am J Cardiol 1998; 104 (2A): 6S–8S.

    Google Scholar 

  15. Sheperd J, Cobbe SM, Ford I, et al. For the West of Scotland coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1996; 335: 1001–1009.

    Article  Google Scholar 

  16. Pfeffer MA, Sacks FM, Lemuel A, et al. Cholesterol and recurrent events: a secondary prevention trial for normolipidemic patients. Am J Cardiol 1995; 76: 98C–106C.

    Article  PubMed  CAS  Google Scholar 

  17. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  18. Jukema JW, Bruschke AV, van Boven AJ, et al. Coronary artery disease/myocardial infarction: effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels: The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91: 2528–2540.

    Article  PubMed  CAS  Google Scholar 

  19. Pitt B, Mancini GB, Ellis SG, et al. Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): reduction in atherosclerosis progression and clinical events. J Am Coll Cardiol 1995; 26: 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  20. Stone PH. Natural history of coronary atherosclerosis using quantitative angiography in men, and implications for clinical trials of coronary regression. Am J Cardiol 1993; 71: 766–772.

    Article  PubMed  CAS  Google Scholar 

  21. Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 1987; 257: 3233–3240.

    Article  PubMed  CAS  Google Scholar 

  22. Sacks FM, Gibson CM, Rosner B, et al. The influence of pretreatment low density lipoprotein cholesterol concentrations on the effect of hypocholesterolemic therapy on coronary atherosclerosis in angiographic trials. Am J Cardiol 1995; 76: 78C–85C.

    Article  PubMed  CAS  Google Scholar 

  23. Nawrocki JW, Weiss SR, Davidson MH, et al. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 1995; 15: 678–682.

    Article  PubMed  CAS  Google Scholar 

  24. Davidson M, McKenney J, Stein E, et al. Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Am J Cardiol 1997; 79: 1475–1481.

    Article  PubMed  CAS  Google Scholar 

  25. Dart A, Jerums G, Nicholson G, et al. A multicenter, double-blind, one-year study comparing safety and efficacy of atorvastatin versus simvastatin in patients with hypercholesterolemia. Am J Cardiol 1997; 80: 39–44.

    Article  PubMed  CAS  Google Scholar 

  26. Jones P, Kafonek S, Laurora I, et al. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (The Curves Study). Am J Cardiol 1998; 81: 582–587.

    Article  PubMed  CAS  Google Scholar 

  27. Libby P, Schoenbeck U, Mach F. Current concepts in cardiovascular pathology: the role of LDL cholesterol in plaque rupture and stabilization. Am J Med 1998; 104 (2A): 14S–18S.

    Article  PubMed  CAS  Google Scholar 

  28. Tzivoni D, Klein J. Improvement of myocardial ischemia by lipid lowering drugs. Eur Heart J 1998; 19: 230–234.

    Article  PubMed  CAS  Google Scholar 

  29. Massy ZA, Keane WF, Kasiske BL, et al. Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 1996; 347: 102–103.

    Article  PubMed  CAS  Google Scholar 

  30. Rossouw JE. Lipid-lowering interventions in angiographic trials. Am J Cardiol 1995; 76: 86C–92C.

    Article  PubMed  CAS  Google Scholar 

  31. Brown BG. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–1298.

    Article  PubMed  CAS  Google Scholar 

  32. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36.

    Article  PubMed  CAS  Google Scholar 

  33. Vogel RA. Coronary risk factors, endothelial function, and atherosclerosis: a review. Clin Cardiol 1997; 20: 426–432.

    Article  PubMed  CAS  Google Scholar 

  34. Lerman A, Burnett JC Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 1992; 86(Suppl III):III-12–III-19.

    Google Scholar 

  35. Anderson TJ, Uehata A, Gerhard MD, et al. Close relationship of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 2345–2352.

    Google Scholar 

  36. Vogel RA. Endothelium-dependent vasodilation of coronary artery diameter and blood flow. Circulation 1992; 91: 325–327.

    Google Scholar 

  37. Penny WF, Rockman H, Long J, et al. Heterogeneity of vasomotor responses to acetylcholine along the human coronary artery. J Am Coll Cardiol 1995; 25: 1046–1055.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson EA, Mark AL. Flow-mediated and reflex changes in large peripheral artery tone in humans. Circulation 1989; 79: 93–100.

    Article  PubMed  CAS  Google Scholar 

  39. Celermajer DS, Sorenson KE, Gooch VM. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1993; 340: 1111–1115.

    Article  Google Scholar 

  40. Vogel RA, Coretti MC, Plotnick GD. Changes in flow-mediated brachial artery vasoactivity with lowering of desirable cholesterol levels in healthy men. Am J Cardiol 1996; 77: 37–40.

    Article  PubMed  CAS  Google Scholar 

  41. Corretti, MC, Plotnick GD, Vogel RA. Effect of treadmill exercise on flow-mediated brachial artery vasoactivity. J Am Coll Cardiol 1996; 27: 130A.

    Google Scholar 

  42. Vogel RA, Coretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. J Am Cardiol 1997; 79: 350–354.

    Article  CAS  Google Scholar 

  43. Glagov S, Weisenberg E, Zarins CK. Compensatory enlargement of human coronary arteries. N Engl J Med 1987; 316: 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  44. Zarins CK, Weisenberg E, Kolettis G. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg 1988; 7: 386–394.

    PubMed  CAS  Google Scholar 

  45. Weissman NJ, Mendelsohn FO, Palacios IF, et al. Development of coronary compensatory enlargement in vivo: sequential assessments with intravascular ultrasound. Am Heart J 1995; 130: 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  46. Berglund H, Luo H, Nishioka T, et al. Highly localized arterial remodeling in patients with coronary atherosclerosis: an intravascular ultrasound study. Circulation 1997; 96: 1470–1476.

    Article  PubMed  CAS  Google Scholar 

  47. Little WC, Constaantinescu M, Applegate RJ, et al. Can arteriography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 78: 1157–1166.

    Article  PubMed  CAS  Google Scholar 

  48. Pasterkamp G, Wensing PJ, Post MJ, et al. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation 1995; 91: 1444–1449.

    Article  PubMed  CAS  Google Scholar 

  49. Mintz GS, Kent KM, Pichard AD, et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses: an intravascular ultrasound study. Circulation 1997; 95: 1791–1798.

    Article  PubMed  CAS  Google Scholar 

  50. Vavuranakis M, Stefanadis C, Toutouzas K, et al. Impaired compensatory coronary artery enlargement in atherosclerosis contributes to the development of coronary artery stenosis in diabetic patients: an in-vivo intravascular ultrasound study. Eur Heart J 1997; 18: 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  51. Kane JP, Malloy MJ, Ports TA, et al. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990; 264: 3007–3012.

    Article  PubMed  CAS  Google Scholar 

  52. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–1298.

    Article  PubMed  CAS  Google Scholar 

  53. Topol E, Nissen SE. Our preoccupation with coronary luminology: the dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995; 92: 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  54. Brown BG, Zhao XQ, Sacco DE, et al. Arteriographic view of treatment to achieve regression of coronary atherosclerosis and to prevent plaque disruption and clinical cardiovascular events. Br Heart J 1993; 69: S48–S53.

    Article  PubMed  CAS  Google Scholar 

  55. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study. Lancet 1994;344:1383– 1389.

    Google Scholar 

  56. Eusterman JH. Atherosclerotic disease of the coronary arteries. A pathologic-radiologic correlative study. Circulation 1962; 26: 1288–1295.

    Article  Google Scholar 

  57. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med 1979; 91: 350–356.

    PubMed  CAS  Google Scholar 

  58. Freudenberg H, Lichtlen PR. The normal wall segment in coronary stenoses—a postmortal study. Z Kardiol 1981; 70: 863–869.

    PubMed  CAS  Google Scholar 

  59. Roberts WC. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death. Am J Cardiol 1979; 44: 39–44.

    Article  PubMed  CAS  Google Scholar 

  60. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. N Engl J Med 1987; 316: 304–309.

    Article  PubMed  CAS  Google Scholar 

  61. Blankenhorn DH, Curry PJ. The accuracy of angiography and ultrasound imaging for atherosclerosis measurement: a review. Arch Pathol Lab Med 1982; 106: 483–490.

    PubMed  CAS  Google Scholar 

  62. Nishimura RA, Edwards WD, Warnes CA, et al. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990; 16: 145–154.

    Article  PubMed  CAS  Google Scholar 

  63. Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 1992; 86: 74–70.

    Google Scholar 

  64. Siegel RJ, Chae JS, Maurer G, et al. Histopathologic correlation of the layered intravascular ultrasound appearance of normal adult human muscular arteries. Am Heart J 1993; 126: 872–878.

    Article  PubMed  CAS  Google Scholar 

  65. Hodgson JM, Reddy KG, Suneja R, et al. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993; 21: 35–44.

    Article  PubMed  CAS  Google Scholar 

  66. Hausmann D, Lundkvist AJ, Friedrich G, et al. Lumen and plaque shape in atherosclerotic coronary arteries assessed by in vivo intracoronary ultrasound. Am J Cardiol 1994; 74: 857–863.

    Article  PubMed  CAS  Google Scholar 

  67. Tuzcu EM, Hobbs, RE, Rincon G, et al. Occult and frequent transmission of atherosclerotic coronary disease with cardiac transplantation—insights from intravascular ultrasound. Circulation 1995; 91: 1706–1713.

    Article  PubMed  CAS  Google Scholar 

  68. Weissman NJ, Palacios IF, Weyman AE. Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements. Am Heart J 1995; 130: 46–51.

    Article  PubMed  CAS  Google Scholar 

  69. Takagi T, Yoshida K, Akasaka T, et al. Intravascular ultrasound analysis of reduction in progression of coronary narrowing by treatment with pravastatin. Am J Cardiol 1997; 79: 1673–1676.

    Article  PubMed  CAS  Google Scholar 

  70. De Mario C. Clinical application and image interpretation in intracoronary ultrasound. Eur Heart J 1998; 19: 207–229.

    Article  PubMed  Google Scholar 

  71. Erbel R, Ge J, Bockisch A, et al. Value of intracoronary ultrasound and Doppler in the differentiation of angiographically normal coronary arteries: a prospective study in patients with angina pectoris. Eur Heart J 1996; 17: 880–889.

    Article  PubMed  CAS  Google Scholar 

  72. Alfonso F, Macaya C, Goicolea J, et al. Intravascular ultrasound imaging of angiographically normal coronary segments in patients with coronary artery disease. Am Heart J 1994; 127: 536–544.

    Article  PubMed  CAS  Google Scholar 

  73. Hausmann D, Johnson JA, Sudhir K, et al. Angiographically silent atherosclerosis detected by intravascular ultrasound in patients with familial hypercholesterolemia and familial combined hyperlipidemia: correlation with high density lipoproteins. J Am Coll Cardiol 1996; 27: 1562–1570.

    Article  PubMed  CAS  Google Scholar 

  74. Ge J, Erbel R, Zamorano J, et al. Coronary artery remodeling in atherosclerotic disease: an intravascular ultrasonic study in vivo. Coron Artery Dis 1993; 4: 981–986.

    Article  PubMed  CAS  Google Scholar 

  75. Hermiller JB, Tenaglia AN, Kisslo KB, et al. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol 1993; 71: 665–668.

    Article  PubMed  CAS  Google Scholar 

  76. Losordo DW, Rosenfield K, Kaufman J, et al. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. Circulation 1994; 89: 2570–2577.

    Article  PubMed  CAS  Google Scholar 

  77. Gerber TC, Erbel R, Gorge G, et al. Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol 1993; 73: 666–671.

    Article  Google Scholar 

  78. Tuzcu EM, De Franco AC, Goormastic M, et al. Dichotomous pattern of coronary atherosclerosis 1 to 9 years after transplantation: insights from systematic intravascular ultrasound imaging. J Am Coll Cardiol 1996; 27: 839–846.

    Article  PubMed  CAS  Google Scholar 

  79. Crow RS Prineas RJ, Hannan PJ, et al. Prognostic associations of the Minnesota Code Serial Electrocardiographic Change Classification with coronary heart disease mortality in the multiple risk factor intervention trial. Am J Cardiol 1997; 80: 138–144.

    Article  Google Scholar 

  80. Pitt B, Waters D, Brown WV, Boven J, Schwartz L, et al. for the Atorvastatin vs. Revascularization Treatment Investigators. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. NEJM 1999; 341: 70–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foody, J.M., Nissen, S.E. (2001). The Unstable Plaque. In: Foody, J.M. (eds) Preventive Cardiology. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-001-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-001-8_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6241-9

  • Online ISBN: 978-1-59259-001-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics