Skip to main content

Hypoxia, Hypercarbia, and Atmospheric Control

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

As the duration of orbital missions and the size of the crews increase and as plans are made for exploration beyond Earth’s orbit, the ability to provide space crews with a healthy and comfortable living environment grows ever more complex. Advanced environmental control systems will be needed for both planetary exploration missions and permanent settlements beyond Earth’s atmosphere. New technologies will be needed to enhance water reclamation, produce O2, and remove carbon dioxide (CO2). The primary requirements for such a system will be minimal power usage and volume, robust autonomous operation, and a closed-loop design that minimizes reliance on stored consumables. Once we venture beyond low Earth orbit (LEO), the risks associated with radiation increase, the capability for frequent resupply diminishes, and medical assistance and evacuation become less available. Life support systems must become more “closed loop,” more robust, more efficient, more operationally simplified, more automated, and more reliable—while simultaneously requiring less energy-intensive, less massive, and less expensive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones W, Ingelfinger A. Atmospheric control. In: Parker J, West V, editors. Bioastronautics data book. 2nd ed. Washington: National Aeronautics and Space Administration; 1973. p. 807–846. NASA SP-3006.

    Google Scholar 

  2. Malkin V. Barometric pressure and gas composition of spacecraft cabin air. In: Sulzman FM, Genin AM, editors. Life support and habitability, vol. II. Washington: American Institute of Aeronautics and Astronautics; 1993. p. 1–36.

    Google Scholar 

  3. Graf J, Finger B, Daues K. Life Support systems for the space environment: basic tenets for designers, Rev. A, June 27, 2002. http://advlifesupport.jsc.nasa.gov.

  4. Norcross J, Norsk P, Law J, et al. Effects of the 8 psia/32% O2 atmosphere on the human in the spaceflight environment. NASA/TM-2013-217377.

    Google Scholar 

  5. International Civil Aviation Organization. Manual of the ICAO standard atmosphere. 2nd ed. Montreal: ICAO; 1964.

    Google Scholar 

  6. Billings C. Atmosphere. Chapter 2. In: Parker J, West V, editors. Bioastronautics data book. 2nd ed. Washington: National Aeronautics and Space Administration; 1973. p. 1–34. NASA SP-3006.

    Google Scholar 

  7. Murray DH, Pilmanis AA, Blue RS, et al. Pathophysiology, prevention, and treatment of ebullism. Aviat Space Environ Med. 2013;84:89–96.

    PubMed  Google Scholar 

  8. Kolesari G, Kindwall E. Survival following accidental decompression to an altitude greater than 74,000 ft (22,555 m). Aviat Space Environ Med. 1982;53(12):1211–4.

    CAS  PubMed  Google Scholar 

  9. Harland D. The story of space station Mir. Chichester, UK: Springer Praxis Books; 2005.

    Google Scholar 

  10. Smith AM. Acute hypoxia and related symptoms on mild exertion at simulated altitudes below 3048 m. Aviat Space Environ Med. 2007;78(10):979–84.

    PubMed  Google Scholar 

  11. Netzer N, Kingman S, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illness. J Travel Med. 2013;20(4):247–55.

    PubMed  Google Scholar 

  12. Petrassi FA, Hodkinson PD, Walters PL, Gaydos SJ. Hypoxic hypoxia at moderate altitudes: review of the state of the science. Aviat Space Environ Med. 2012;83(10):975–84.

    PubMed  Google Scholar 

  13. Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology (Bethesda). 2014;29(6):388–402.

    CAS  Google Scholar 

  14. Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant. 2014;29(3):497–506.

    CAS  PubMed  Google Scholar 

  15. Federal Aviation Regulations. Federal Aviation Administration. 2017. https://www.faa.gov/regulations_policies/faa_regulations/.

  16. Wessel JH III, Schaefer CM, Thompson MS, Norcross JR, Bekdash OS. Retrospective evaluation of clinical symptoms due to mild hypobaric hypoxia exposure in microgravity. Aerosp Med Hum Perf. 2018;89(9):1–6.

    Google Scholar 

  17. Montgomery AB, Luce JM, Murray JF. Retrosternal pain is an early indicator of oxygen toxicity. Am Rev Respir Dis. 1989;139:1548–50.

    CAS  PubMed  Google Scholar 

  18. Caldwell PR, Lee WL Jr, Schildkraut HS, et al. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol. 1966;21:1477–83.

    CAS  PubMed  Google Scholar 

  19. Clark J. Therapeutic and toxic effects of hyperbaric oxygenation. In: Crystal R, West J, et al., editors. The lung: scientific foundations. New York: Raven Press Ltd.; 1991. p. 2123–31.

    Google Scholar 

  20. Robertson W, Hargreaves J, Herlocher J, et al. Physiologic response to increased oxygen partial pressure II: respiratory studies. Aerospace Med. 1964;35:618–22.

    CAS  PubMed  Google Scholar 

  21. West JB. Fire hazard in oxygen-enriched atmospheres at low barometric pressures. Aviat Space Environ Med. 1997;68(2):159–62.

    CAS  PubMed  Google Scholar 

  22. Michel EL, Waligora JM, Horrigan DJ, Shumate WH. Environmental factors. Chapter 5. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration; 1975.

    Google Scholar 

  23. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015;527(7577):240–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Raichle ME, Gusnard DA. Appraising the brain’s energy budget. Proc Natl Acad Sci U S A. 2002;99(16):10237–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lataste X. The blood-brain barrier in hypoxia. Int J Sports Med. 1992;13:S45–7.

    PubMed  Google Scholar 

  26. Neubauer J, Melton J, Edelman N. Modulation of respiration during brain hypoxia. J Appl Physiol. 1990;68:441–51.

    CAS  PubMed  Google Scholar 

  27. Hammond M, Gale GE, Kapitan K, et al. Pulmonary gas exchange in humans during normobaric hypoxic exercise. J Appl Physiol. 1986;16:1749–57.

    Google Scholar 

  28. Wagner PD, Gale GE, Moon RE, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61:260–70.

    CAS  PubMed  Google Scholar 

  29. Wood S. Interactions between hypoxia and hypothermia. Annu Rev Physiol. 1991;53:71–85.

    CAS  PubMed  Google Scholar 

  30. Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. Crit Care. 2015;19:103.

    PubMed  PubMed Central  Google Scholar 

  31. Scirica BM. Therapeutic hypothermia after cardiac arrest. Circulation. 2013;127:244–50.

    PubMed  Google Scholar 

  32. Yoneda I, Tomoda M, Tokumaru O, et al. Time of useful consciousness determination in aircrew members with reference to prior altitude chamber experience and age. Aviat Space Environ Med. 2000;71:72–6.

    CAS  PubMed  Google Scholar 

  33. Turner CE, Byblow WD, Gant N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci. 2015;35(4):1773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, et al. The effects of exercise under hypoxia on cognitive function. PLoS One. 2013;8(5):e63630. https://doi.org/10.1371/journal.pone.0063630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rupp T, Jubeau M, Lamalle L, Warnking JM, Millet GY, Wuyam B, Esteve F, Levy P, Krainik A, Verges S. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab. 2014;34(11):1802–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ainslie PN, Subudhi AW. Cerebral blood flow and high altitude. High Alt Med Biol. 2014;15(2):133–40.

    CAS  PubMed  Google Scholar 

  37. Brinchmann-Hansen O, Myhre K, Sandvik L. Retinal vessel responses to exercise and hypoxia before and after high altitude acclimatisation. Eye (Lond). 1989;3(Pt 6):768–76.

    Google Scholar 

  38. Brinchmann-Hansen O, Myhre K. Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. Aviat Space Environ Med. 1990;61(2):112–6.

    CAS  PubMed  Google Scholar 

  39. Connolly DM, Barbur JL, Hosking SL, Moorhead IR. Mild hypoxia impairs chromatic sensitivity in the mesopic range. Invest Ophthalmol Vis Sci. 2008;49(2):820–7.

    PubMed  Google Scholar 

  40. Horng CT, Liu CC, Wu DM, Wu YC, Chen JT, Chang CJ, Tsai ML. Visual fields during acute exposure to a simulated altitude of 7620 m. Aviat Space Environ Med. 2008;79(7):666–9.

    PubMed  Google Scholar 

  41. Connolly DM, Hosking SL. Aviation-related respiratory gas disturbances affect dark adaptation: a reappraisal. Vision Res. 2006;46(11):1784–93.

    PubMed  Google Scholar 

  42. San T, Polat S, Cingi C, Eskiizmir G, Oghan F, Cakir B. Effects of high altitude on sleep and respiratory system and theirs adaptations. ScientificWorldJournal. 2013;2013:241569.

    PubMed  PubMed Central  Google Scholar 

  43. Stadelmann K, Latshang TD, Tarokh L, Lo Cascio CM, Tesler N, Stoewhas AC, Kohler M, Bloch KE, Huber R, Achermann P. Sleep respiratory disturbances and arousals at moderate altitude have overlapping electroencephalogram spectral signatures. J Sleep Res. 2014;23(4):463–8.

    PubMed  Google Scholar 

  44. Latshang TD, Lo Cascio CM, Stöwhas AC, Grimm M, Stadelmann K, Tesler N, Achermann P, Huber R, Kohler M, Bloch KE. Are nocturnal breathing, sleep, and cognitive performance impaired at moderate altitude (1,630-2,590 m)? Sleep. 2013;36(12):1969–76.

    PubMed  PubMed Central  Google Scholar 

  45. Burgess KR, Lucas SJ, Shepheard K, et al. Influence of cerebral blood flow on central sleep apnea at high altitude. Sleep. 2014;37(10):1679–87.

    PubMed  PubMed Central  Google Scholar 

  46. de Aquino Lemos V, Antunes HK, dos Santos RV, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology. 2012;49(9):1298–306.

    PubMed  Google Scholar 

  47. West JB. Tolerance to severe hypoxia: lessons from Mt. Everest. Acta Anaesthesiol Scand Suppl. 1990;34:18–23.

    Google Scholar 

  48. Sutton J, Reeves J, Wagner P, et al. Operation Everest II: oxygen transport during exercise at extreme hypoxia. J Appl Physiol. 1988;64:1309–21.

    CAS  PubMed  Google Scholar 

  49. Agostoni P, Swenson ER, Bussotti M, Revera M, Meriggi P, Faini A, Lombardi C, Bilo G, Giuliano A, Bonacina D, Modesti PA, Mancia G, Parati G. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. J Appl Physiol (1985). 2011;110(6):1564–71.

    Google Scholar 

  50. Farias JG, Jimenez D, Osorio J, et al. Acclimatizaation to chronic intermittent hypoxia in mine workers: a challenge to mountain medicine in Chile. Biol Res. 2013;46(1):59–67.

    PubMed  Google Scholar 

  51. Lambertsen C. Hypoxia, altitude and acclimatization. In: Mountcastle V, editor. Medical physiology. 14th ed. St. Louis: Mosby; 1980.

    Google Scholar 

  52. Hackett P, Rabold M. High-altitude medical problems. In: Tintinalli J, Ruiz E, Krome R, editors. Emergency medicine: a comprehensive study guide. 4th ed. New York: McGraw-Hill Company; 1996.

    Google Scholar 

  53. Scholz H, Schurek H, Eckardt K, Bauer C. Role of erythropoietin in adaptation to hypoxia. Experientia. 1990;46:1197–201.

    CAS  PubMed  Google Scholar 

  54. Young AJ, Young PM. Human acclimatization to high terrestrial altitude. In: Pandolf K, Sawka M, Gonzalez R, editors. Human performance physiology and environmental medicine at terrestrial extremes. Carmel: Cooper Publishing Group; 1988.

    Google Scholar 

  55. Hochachka P. Mechanism and evolution of hypoxia-tolerance in humans. J Exp Biol. 1998;201:1243–54.

    CAS  PubMed  Google Scholar 

  56. Bebout D, Story D, Roca J, et al. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J Appl Physiol. 1989;67:2286–95.

    CAS  PubMed  Google Scholar 

  57. Appenzeller O, Martignoni E. The autonomic nervous system and hypoxia: mountain medicine. J Auton Nerv Syst. 1996;57:1–12.

    CAS  PubMed  Google Scholar 

  58. Conkin J. The Mars project: avoiding decompression sickness on a distant planet. Houston: NASA, Lyndon B. Johnson Space Center; 2000. NASA TM 2000-210188.

    Google Scholar 

  59. Fenton L, Beck G, Djali S, Robinson M. Hypothermia induced by hyperbaric oxygen is not blocked by serotonin antagonists. Pharmacol Biochem Behav. 1993;44:357–64.

    CAS  PubMed  Google Scholar 

  60. Waligora JM, Horrigan DJ, Nicogossian A. The physiology of spacecraft and space suit atmosphere selection. Acta Astronautica. 1991;23:171–7.

    CAS  PubMed  Google Scholar 

  61. Nakae H, Tanaka H, Inaba H. Failure to clear casts and secretions following inhalation injury can be dangerous: report of a case. Burns. 2001;27:189–91.

    CAS  PubMed  Google Scholar 

  62. Robinson L, Miller RH. Smoke inhalation injuries. Am J Otolaryngol. 1986;7:375–80.

    CAS  PubMed  Google Scholar 

  63. Waligora J, Powell M, Sauer R. Spacecraft life-support systems. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1994. p. 109–27.

    Google Scholar 

  64. National Oceanic and Atmospheric Administration. https://www.esrl.noaa.gov/research/themes/carbon/. Accessed 16 Aug 2018.

  65. Eckart P. Spaceflight life support and biospherics. Torrance: Microcosm Press; 1996.

    Google Scholar 

  66. Newkirk D. Almanac of Soviet manned space flight. Houston: Gulf Publishing Co; 1990.

    Google Scholar 

  67. Rahn H, Fenn WO. The oxygen—carbon dioxide diagram. WADC-TR-53-255, Wright-Patterson Air Force Base, Ohio; 1953.

    Google Scholar 

  68. Son CH, Zapata JL, Lin CH. Investigation of airflow and accumulation of carbon dioxide in the Service Module crew quarters. Society of Automotive Engineers. Technical Paper No. 2002-01-2341; 2002.

    Google Scholar 

  69. Law J, Young M, Alexander D, Mason S, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017;88(10):1–6.

    Google Scholar 

  70. Barer GR, Howard P, Shaw JW. Stimulus-response curves for the pulmonary vascular bed to hypoxia and hypercapnia. J Physiol (Lond). 1970;211:139–55.

    CAS  Google Scholar 

  71. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol. 1964;206:25–35.

    CAS  PubMed  Google Scholar 

  73. Pingree BJW. Acid-base and respiratory changes after prolonged exposure to 1% carbon dioxide. Clin Sci Mol Med. 1977;52:67–74.

    CAS  PubMed  Google Scholar 

  74. Schaefer KE, Hastings BJ, Carey CR, Nicolas G Jr. Respiratory acclimatization to carbon dioxide. J Appl Physiol. 1963;18(6):1071–8.

    CAS  PubMed  Google Scholar 

  75. Elliott AR, Prisk GK, Schöllmann C, Hoffmann U. Hypercapnic ventilator response in humans before, during, and after 23 days of low level CO2 exposure. Aviat Space Environ Med. 1998;69:391–6.

    CAS  PubMed  Google Scholar 

  76. Sliwka U, Krasney JA, Simon SG, Schmidt P, Noth J. Effects of sustained low-level elevations of carbon dioxide on cerebral blood flow and autoregulation of the intracerebral arteries in humans. Aviat Space Environ Med. 1998;69(3):299–306.

    CAS  PubMed  Google Scholar 

  77. Messier AA, Heyder E, Braithwaite WR, McCluggage C, Peck A, Schaefer KE. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines. Undersea Biomed Res. 1979;6:S57–70.

    PubMed  Google Scholar 

  78. Schaefer KE. Physiological stresses related to hypercapnia during patrols on submarines. Undersea Biomed Res. 1979;6:S15–47.

    Google Scholar 

  79. Drummer C, Friedel V, Borger A, Stormer IR, Wolter S, Zittermann A, Wolfram G, Heer M. Effects of elevated carbon dioxide environment on calcium metabolism in humans. Aviat Space Environ Med. 1998;69:291–8.

    CAS  PubMed  Google Scholar 

  80. Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120(12):1671–7. https://doi.org/10.1289/ehp.1104789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerospace Med Human Perf. 2018;89(6):520–5.

    Google Scholar 

  82. Ryder VE, Scully RR, Alexander DJ, Young M, Thomas G, et al., editors. Effects of acute exposure to carbon dioxide upon cognitive functions. 2017 NASA Human Research Program Investigators’ Workshop, 23–26 January, 2017. Galveston, TX.

    Google Scholar 

  83. Stankovic A, Alexander D, Oman CM, Schneiderman J. A review of cognitive and behavioral effects of increased carbon dioxide exposure in humans. Hanover: National Aeronautics and Space Administration; 2016. NASA/TM-2016-219277.

    Google Scholar 

  84. Law J, Van Baalen M, Foy M, Mason SS, Mendez C, Wear ML, Meyers VE, Alexander D. Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med. 2014;56(5):477–83.

    CAS  PubMed  Google Scholar 

  85. Law J, Watkins S, Alexander D. In-flight carbon dioxide exposures and related symptoms: association, susceptibility, and operational implications. Hanover: National Aeronautics and Space Administration; 2010. NASA/TP-2010- 216126.

    Google Scholar 

  86. Polyakov VV, Lacota NG, Gundel A. Human thermohomeostasis onboard “Mir” and in simulated microgravity studies. Acta Astronautica. 2001;49:137–43.

    CAS  PubMed  Google Scholar 

  87. Fortney SM, et al. Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med. 1998;69:137–41.

    CAS  PubMed  Google Scholar 

  88. Stahn AC, Werner A, Optaz O, et al. Increased core body temperature in astronauts during long-duration space missions. Sci Rep. 2017;7, Article No. 16180. https://doi.org/10.1038/s41598-017-15560-w.

  89. Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. Chapter 5. NASA RP-1324.

    Google Scholar 

  90. Churchill SE, editor. Fundamentals of space life sciences. Malabar: Krieger Publishing Co; 1997.

    Google Scholar 

  91. Rippstein WJ, Schneider HJ. Toxicological aspects of the Skylab program. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: U.S. Government Printing Office; 1977. p. 70–3. NASA SP-377.

    Google Scholar 

  92. ASME AG-1-2003 code on nuclear air and gas treatment. American Society of Mechanical Engineers, New York 10017-2392; 2003.

    Google Scholar 

  93. Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. Appendix C, C.2. NASA RP-1324.

    Google Scholar 

  94. Wieland PO. Designing for human presence in space: an introduction to environmental control and life support systems. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994. 2.3. NASA RP-1324.

    Google Scholar 

  95. Link MM. Space medicine in project Mercury. Washington: NASA Scientific and Technical Information Division; 1965. NASA SP-4003.

    Google Scholar 

  96. Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: NASA Scientific and Technical Information Division; 1975. NASA SP-368.

    Google Scholar 

  97. Hacker BC, Grimwood JM. On the shoulders of Titans: a history of project Gemini. Washington: NASA Scientific and Technical Information Division; 1977. NASA SP-4203.

    Google Scholar 

  98. Collins M. Carrying the fire: an astronaut’s journeys. New York: Farrar, Straus, and Giroux, Inc.; 1974.

    Google Scholar 

  99. Nicogossian A, Mohler S, Gazenko O, Grigoriev AI, series editors. Space biology and medicine: Joint U.S./Russian Publication in Five Volumes. p. 24.

    Google Scholar 

  100. Ezell EC, Ezell LN. The partnership: a history of the Apollo-Soyuz test project. Washington: NASA Scientific and Technical Information Division; 1978. NASA SP-4209.

    Google Scholar 

  101. Williams DE, Dake JR. International Space Station environmental control and life support system status for the prior year: 2010-2011. In: 42nd International Conference on Environmental Systems, 15–19 July 2012. San Diego: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  102. Hackett PH, Roach RC. High-altitude medicine. In: Auerbach PS, editor. Wilderness medicine. 3rd ed. St. Louis: Mosby Year Book; 1995. p. 3.

    Google Scholar 

  103. Rousseau J. Atmospheric control systems for space vehicles. Report No. ASD-TDR-62-527. Los Angeles: AiResearch Manufacturing Division; 1963.

    Google Scholar 

  104. NASA Space Flight Human-System Standard, vol 2. Human factors, habitability, and environmental health. Section 6: natural and induced environments. NASA-STD-3001, vol 2, Rev A; 2015.

    Google Scholar 

  105. Pickard JS, Gradwell DP. Respiratory physiology and protection against hypoxia. In: Davis JR, et al., editors. Fundamentals of aerospace medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. p. 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beck, G., Law, J., Bacal, K., Barratt, M.R. (2019). Hypoxia, Hypercarbia, and Atmospheric Control. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics