Skip to main content

Sleep, Circadian Rhythms, and Fatigue Management in Space Flight Operations

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

Early in the history of human space flight, scientists realized that several factors in the space environment may adversely affect human function and performance. Among the principal concerns expressed were potential disturbances in circadian rhythms and the subsequent effects on performance and well-being. In addition to environmental changes such as microgravity and a sunrise and sunset every 45 minutes in low Earth orbit, several operational reasons were cited for the possible development of sleep disturbances and fatigue during space flight. Over the years, spaceflight investigations have confirmed that sleep disruption and circadian desynchrony are regular occurrences before and during missions, while terrestrial studies have increasingly shown that circadian desynchrony and sleep disruption carry serious health and performance implications. As a result, serious potential consequences remain associated with these risks.

Recent efforts on behalf of flight medical operations, behavioral health and performance psychologists, psychiatrists, and researchers, mission planners, and habitability designers, as well as crewmembers themselves, have yielded fatigue prevention and sleep health initiatives across the United States and international space agencies. This chapter is intended to provide a description of sleep and circadian rhythms in space and relevant health and performance outcomes based on terrestrial evidence; operational strategies for risk mitigation; and current and future research oriented toward the assessment and treatment of fatigue on orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschoff J. Timegivers of 24-hour physiological cycles. In: Schaefer KE, editor. Man’s dependence on the earthly atmosphere. New York, NY: Macmillan; 1962.

    Google Scholar 

  2. Strughold H, Hale HB. Biological and physiological rhythms. In: Melvin Calvin (USA), and Oleg Gazenko (USSR), editors. Space as a habitat. Vol. 1. Washington, DC: NASA Scientific and Technical Information Office; 1975, p. 535–7. NASA SP-374. Calvin M, Gazenko OG, series eds., Foundations of Space Biology and Medicine.

    Google Scholar 

  3. Alyakrinskiy BS. Current status of space biorhythmology. Kosm Biol Aviakosm Med. 1977;2:1–13.

    Google Scholar 

  4. Carskadon MA, Dement WC. Norman human sleep. In: Kryer M, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: W.B. Saunders Co.; 1989. p. 3–13.

    Google Scholar 

  5. Hauri P, Hawkins DR. Alpha-delta sleep. Electroencephalogr Clin Neurophysiol. 1973;34:233–7.

    CAS  PubMed  Google Scholar 

  6. Aldrich MS. Sleep medicine, vol. 53. New York: Oxford University Press; 1999. p. 17–9.

    Google Scholar 

  7. Elsenbruch S, Harnish MJ, Orr WC. Heart rate variability during waking and sleep in healthy males and females. Sleep. 1999;22:1067–71.

    CAS  PubMed  Google Scholar 

  8. Benca RM. Sleep in psychiatric disorders. ACCP 2008 Sleep Medicine Board Review Syllabus Book, 71; 1992.

    Google Scholar 

  9. Stanley N. Actigraphy in psychopharmacology. In: HindmarchI SPD, editor. Human Psychopharmacology. Chichester: Wiley; 1987. p. 67–93.

    Google Scholar 

  10. Sadeh A, Alster J, Urbach D, et al. Actigraphically-based automatic bedtime sleep-wake scoring: validity and clinical applications. J Ambul Monit. 1989;2:209–16.

    Google Scholar 

  11. Kripke DF, Mullaney DJ, Messin S. Wrist actigraph measures of sleep and rhythms. Electroencephalogr Clin Neurophysiol. 1978;44:674–8.

    CAS  PubMed  Google Scholar 

  12. Blackwell T, Redline S, Ancoli-Israel S, Schneider JL, Surovec S, Johnson NL, Stone KL. Comparison of sleep parameters from actigraphy and polysomnography in older women: the SOF study. Sleep. 2008;31(2):283.

    PubMed  PubMed Central  Google Scholar 

  13. Sivertsen B, Omvik S, Havik OE, Pallesen S, Bjorvatn B, Nielsen GH, et al. A comparison of actigraphy and polysomnography in older adults treated for chronic primary insomnia. Sleep. 2006;29(10):1353.

    PubMed  Google Scholar 

  14. Monk TH, Buysse DJ, Rose LR. Wrist actigraphic measures of sleep in space. Sleep. 1999;22:948–54.

    CAS  PubMed  Google Scholar 

  15. Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ. Self-reported and measured sleep duration: how similar are they? Epidemiology. 2008;19(6):838–45.

    PubMed  PubMed Central  Google Scholar 

  16. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195.

    PubMed  Google Scholar 

  17. Lockley S. Non-visual photoreception in the human eye: Using light to counter jetlag, shiftwork and fatigue [PDF Document]. 2011. Retrieved from http://www.dsls.usra.edu/education/grandrounds/archive/2011/20110524/

  18. Golder SA, Macy MW. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science. 2011;333(6051):1878–81.

    CAS  PubMed  Google Scholar 

  19. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313(21):1315–22.

    CAS  PubMed  Google Scholar 

  20. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284(5423):2177–81.

    CAS  PubMed  Google Scholar 

  21. Wurts SW, Edgar DM. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci. 2000;20(11):4300–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Winget CM, DeRoshia CW, Markley CL, et al. A review of human physiological and performance changes associated with desynchronosis of biological rhythms. Aviat Space Environ Med. 1984;55:1085–96.

    CAS  PubMed  Google Scholar 

  23. Czeisler CA, Walsh JK, Wesnes KA, Arora S, Roth T. Armodafinil for treatment of excessive sleepiness associated with shift work disorder: a randomized controlled study. Mayo Clin Proc. 2009;84(11):958–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Minors DS, Waterhouse JM, Wirz-Justice A. A human phase response curve to light. Neurosci Lett. 1991;133:36–40.

    CAS  PubMed  Google Scholar 

  25. Rhoades RA, Tanner GA, editors. Medical physiology. Boston: Little, Brown; 1995.

    Google Scholar 

  26. Wever R. Light effects on human circadian rhythms: a review of recent Andechs experiments. J Biol Rhythms. 1989;4:161–85.

    CAS  PubMed  Google Scholar 

  27. Honma K, Honma S, Wada T. Phase-dependent shift of free running human circadian rhythms in response to a single bright light pulse. Experientia. 1987;43:1205–7.

    CAS  PubMed  Google Scholar 

  28. Honma K, Honma S, Wada T. Entrainment of human circadian rhythms by artificial bright light cycles. Experientia. 1987;43:572–4.

    CAS  PubMed  Google Scholar 

  29. Czeisler CA, Kronauer R, Allan J, et al. Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science. 1989;244:1328–33.

    CAS  PubMed  Google Scholar 

  30. Eastman CI, Miescke KJ. Entrainment of circadian rhythms with 26-h bright light and sleep-wake schedules. Am J Physiol. 1990;259:R1189–97.

    CAS  PubMed  Google Scholar 

  31. Stoner JD. Aircrew fatigue monitoring during sustained flight operations from Souda Bay, Crete, Greece. Aviat Space Environ Med. 1996;67:863–6.

    CAS  PubMed  Google Scholar 

  32. Lewy AJ, Wehr TA, Goodwin FK, et al. Light suppresses melatonin secretion in humans. Science. 1980;210:1267–9.

    CAS  PubMed  Google Scholar 

  33. Campbell S, Dawson D. Enhancement of nighttime alertness and performance with bright ambient light. Physiol Behav. 1990;48:317–20.

    CAS  PubMed  Google Scholar 

  34. Badia P, Myers B, Boecker M, et al. Bright light effects on body temperature, alertness, EEG and behavior. Physiol Behav. 1991;50:583–8.

    CAS  PubMed  Google Scholar 

  35. Edelson M, Tirney S, Gaddy F, et al. Effect of light intensity on oral, rectal, and tympanic temperature and full body activity (abstract). Sleep Res. 1991;20:454.

    Google Scholar 

  36. Gaddy JR, Edelson M, Stewart K, et al. Possible retinal spatial summation in melatonin suppression. In: Holick M, Kligman A, editors. Biological effects of light. Berlin: Walter de Gruyter & Co; 1992.

    Google Scholar 

  37. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015;112(4):1232–7.

    CAS  PubMed  Google Scholar 

  38. Zeitzer JM, Fisicaro RA, Ruby NF, Heller HC. Millisecond flashes of light phase delay the human circadian clock during sleep. J Biol Rhythms. 2014;29(5):370–6.

    PubMed  PubMed Central  Google Scholar 

  39. Najjar RP, Zeitzer JM. Temporal integration of light flashes by the human circadian system. J Clin Invest. 2016;126(3):938–47.

    PubMed  PubMed Central  Google Scholar 

  40. Caruso CC. Negative impacts of shiftwork and long work hours. Rehabil Nurs. 2014;39(1):16–25.

    PubMed  Google Scholar 

  41. Sigurdardottir LG, Markt SC, Rider JR, Haneuse S, Fall K, Schernhammer ES, et al. Urinary melatonin levels, sleep disruption, and risk of prostate cancer in elderly men. Eur Urol. 2015;67(2):191–4.

    CAS  PubMed  Google Scholar 

  42. Flynn-Evans EE, Mucci L, Stevens RG, Lockley SW. Shiftwork and prostate-specific antigen in the National Health and Nutrition Examination Survey. J Natl Cancer Inst. 2013;105(17):1292–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen J, Stevens RG. Case–control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer. 2012;48(11):1722–9.

    PubMed  Google Scholar 

  44. Kloog I, Stevens RG, Haim A, Portnov BA. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control. 2010;21(12):2059–68.

    PubMed  Google Scholar 

  45. Shanahan TL, Czeisler CA. Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. J Clin Endocrinol Metab. 1991;73:227–35.

    CAS  PubMed  Google Scholar 

  46. Benloucif S, Burgess HJ, Klerman EB, Lewy AJ, Middleton B, Murphy PJ, et al. Measuring melatonin in humans. J Clin Sleep Med. 2008;4(1):66–9.

    PubMed  PubMed Central  Google Scholar 

  47. Vining RF, McGinley RA, Maksvytis JJ, et al. Salivary cortisol: a better measure of adrenal cortical function than serum cortisol. Ann Clin Biochem. 1983;20:329–35.

    CAS  PubMed  Google Scholar 

  48. Shibasaki T, Imaki T. Corticotropin releasing factor, opioid and arousal in stress. In: Mornex R, Jaffiol C, LeClere J, editors. Progress in endocrinology: proceedings of the Ninth International Congress of Endocrinology, Nice 1992. Carnforth: Parthenon Publishing; 1993. p. 185.

    Google Scholar 

  49. Millar M. Measuring fatigue [Powerpoint Slides]. 2012. Retrieved from http://www.icao.int/safety/fatiguemanagement/FRMSBangkok/4.%20Measuring%20Fatigue.pdf

  50. Dinges DF, Broughton RJ, editors. Sleep and alertness: chronobiological, behavioral and medical aspects of napping. New York: Raven Press; 1989.

    Google Scholar 

  51. Dinges DF. An overview of sleepiness and accidents. J Sleep Res. 1995;4:4–14.

    CAS  PubMed  Google Scholar 

  52. Rosekind MR. Awakening a nation: a call to action. Sleep Health. 2015;1(1):9–10.

    PubMed  Google Scholar 

  53. Caldwell J, Chandler J, Hartzler B. Battling fatigue in aviation: recent advancements in research and practice. J Med Sci. 2012;32(2):047–56.

    Google Scholar 

  54. Basner M, Mollicone D, Dinges DF. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronautica. 2011;69:949–59.

    PubMed  PubMed Central  Google Scholar 

  55. Van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117–26.

    PubMed  Google Scholar 

  56. Mullington JM, Abbott SM, Carroll JE, Dijk DJ, Dinges DF, Gehrman PR, et al. Developing biomarker arrays predicting sleep and circadian-coupled risks to health. Sleep. 2016;39(4):727–36.

    PubMed  PubMed Central  Google Scholar 

  57. Luckhaupt SE, Tak S, Calvert GM. The prevalence of short sleep duration by industry and occupation in the National Health Interview Survey. Sleep. 2010;33(2):149–59.

    PubMed  PubMed Central  Google Scholar 

  58. National Sleep Foundation. Sleep health index 2014 – highlights. 2014. Retrieved from https://sleepfoundation.org/sleep-health-index-2014-highlights#overlay-context=sleep-polls

  59. Basner M, Fomberstein K, Razavi F, Banks S, William J, Rosa J, Dinges D. American time use survey: sleep time and its relationship to waking activities. Sleep. 2007;30(9):1085–95.

    PubMed  PubMed Central  Google Scholar 

  60. Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129(1):305–22.

    PubMed  Google Scholar 

  61. Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin in Neurol. 2009;29:320–39.

    Google Scholar 

  62. Rosekind MR, Gregory KB, Mallis MM, Brandt SL, Seal B, Lerner D. The cost of poor sleep: workplace productivity loss and associated costs. J Occup Environ Med. 2010;52(1):91–8.

    PubMed  Google Scholar 

  63. Cappuccio F, Miller MA, Lockley SW. Sleep, health, and society: from aetiology to public health. Oxford: Oxford University Press; 2010.

    Google Scholar 

  64. Furlan R, Barbic F, Piazza S, et al. Modifications of cardiac autonomic profile associated with a shift schedule of work. Circulation. 2000;102:1912–6.

    CAS  PubMed  Google Scholar 

  65. Knutsson A, Akerstedt T, Johnsson BG, et al. Increased risk of ischaemic heart disease in shift workers. Lancet. 1986;2:89–92.

    CAS  PubMed  Google Scholar 

  66. Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90.

    PubMed  PubMed Central  Google Scholar 

  67. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–50.

    PubMed  Google Scholar 

  68. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7.

    CAS  Google Scholar 

  69. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Trans Med. 2012;4(147):147ra111.

    Google Scholar 

  70. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The effect of body posture on brain glymphatic transport. J Neuroscie. 2015;35(31):11034–44.

    CAS  Google Scholar 

  71. Flynn-Evans E, Gregory K, Arsintescu L, Whitmire A, Leveton LB, Vessey W. Risk of performance decrements and adverse health outcomes resulting from sleep loss, circadian desynchronization, and work overload. NASA Technical Manuscript, JSC-CN-34196; 2015.

    Google Scholar 

  72. Scheuring RA, Jones JA, Novak JD, Polk JD, Gillis DB, Schmid J, et al. The Apollo Medical Operations Project: recommendations to improve crew health and performance for future exploration missions and lunar surface operations. Acta Astronautica. 2008;63(7):980–7.

    Google Scholar 

  73. Santy PA, Kapanka H, Davis JR, et al. Analysis of sleep on shuttle missions. Aviat Space Environ Med. 1988;59:1094–7.

    CAS  PubMed  Google Scholar 

  74. Whitmire A, Slack K, Locke J, Keeton K, Patterson H, Faulk J, Leveton L. Sleep quality questionnaire short-duration flyers. NASA Technical Manuscript, TM-2013-217378; 2013.

    Google Scholar 

  75. Dijk D-J, Neri DF, Wyatt JK, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regulat Integr Comp Physiol. 2001;281:R1647–64.

    CAS  Google Scholar 

  76. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 2014;13(9):904–12.

    PubMed  PubMed Central  Google Scholar 

  77. Putcha L, Berens KL, Marshburn TH, et al. Pharmaceutical use by U.S. astronauts on Space Shuttle missions. Aviat Space Environ Med. 1999;70:705–8.

    CAS  PubMed  Google Scholar 

  78. Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA, SP-377; 1977. p. 408–18.

    Google Scholar 

  79. Wotring VE. Medication use by US crewmembers on the International Space Station. FASEB J. 2015;29(11):4417–23.

    CAS  PubMed  Google Scholar 

  80. Dinges D, Johnston S, Jones C, Ecker A, Baskin P, Basner M. A placebo- controlled cross-over trial on the cognitive effects of emergent awakening from sleep after ingestion of zolpidem and zaleplon. Paper presented at the Sleep Meeting in Denver, Colorado, 2016. Abstract retrieved from http://www.sleepmeeting.org/docs/default-source/default-document-library/sleep-39-as_final.pdf?sfvrsn=2

  81. Gundel A, Nalishiti V, Reucher E, et al. Sleep and circadian rhythm during a short space mission. Clin Investig. 1993;71:718–24.

    CAS  PubMed  Google Scholar 

  82. Monk TH, Buysse DJ, Billy BD, et al. Sleep and circadian rhythms in four orbiting astronauts. J Biol Rhythms. 1998;13:188–201.

    CAS  PubMed  Google Scholar 

  83. Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res. 1997;6:1–8.

    CAS  PubMed  Google Scholar 

  84. Monk TH, Kennedy KS, Rose LR, Linenger JM. Decreased human circadian pacemaker influence after 100 days in space: a case study. Psychosom Med. 2001;63(6):881–5.

    Google Scholar 

  85. Flynn-Evans EE, Barger LK, Kubey AA, Sullivan JP, Czeisler CA. Circadian misalignment affects sleep and medication use before and during spaceflight. npj Microgravity. 2016;2:15019.

    PubMed  PubMed Central  Google Scholar 

  86. Barger LK, Sullivan JP, Vincent AS, Fiedler ER, McKenna LM, Flynn-Evans EE, et al. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. Sleep. 2012;35(10):1423–35.

    PubMed  PubMed Central  Google Scholar 

  87. Barger LK, Sullivan JP, Czeisler CA, Lockley SW. Fatigue countermeasure program improves alertness and performance in operational flight controllers. Paper presented at the NASA Human Research Program Investigators’ Workshop, Galveston, Texas, 2014. Abstract retrieved from http://www.hou.usra.edu/meetings/hrp2014/pdf/3268.pdf

  88. Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci. 2013;119:155.

    PubMed  PubMed Central  Google Scholar 

  89. Panel CC, Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. J Clin Sleep Med. 2015;11(6):591.

    Google Scholar 

  90. Van Dongen HP, Vitellaro KM, Dinges DF. Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda. Sleep. 2005;28(4):479–96.

    PubMed  Google Scholar 

  91. Van Dongen H, Maislin G, Dinges DF. Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques. Aviat Space Environ Med. 2004;75(3):A147–54.

    PubMed  Google Scholar 

  92. Goel N, Dinges DF. Behavioral and genetic markers of sleepiness. J Clin Sleep Med. 2011;7(5):S19–21.

    PubMed  PubMed Central  Google Scholar 

  93. Kuna ST, Maislin G, Pack FM, Staley B, Hachadoorian R, Coccaro EF, Pack AI. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep. 2012;35(9):1223–33.

    PubMed  PubMed Central  Google Scholar 

  94. Goel N, Dinges DF. Predicting risk in space: genetic markers for differential vulnerability to sleep restriction. Acta astronautica. 2012;77:207–13.

    PubMed  PubMed Central  Google Scholar 

  95. Flynn-Evans E, Caddick Z, Gregory K. Sleep environment recommendations for future spaceflight vehicles. NASA/TM-2016-219282.

    Google Scholar 

  96. Limardo JG, Allen CS, Danielson RW. Status: crewmember noise exposures on the International Space Station. Presented at the 45th International Conference on Environmental Systems; 2015, p. 1–13.

    Google Scholar 

  97. Mount FE, Adam S, McKay T, et al. Human Factors Assessment of the STS-57 SpaceHab-1 Mission. Houston, TX: NASA Johnson Space Center; 1994. NASA TM 104802.

    Google Scholar 

  98. DiLaura D, Houser KW, Mistrick RG, Steffy GR. The lighting handbook 10th edition: reference and application. Illuminating Engineering Society of North America, 120; 2011.

    Google Scholar 

  99. Leveton L, Brainard G, Whitmire A, Kubey A, Maida J, Charles B, Johnston S. An integrated, evidence-based approach to transitioning to operations: specifications for future replacement lights on ISS, NASA Technical Document, JSC-CN-21322; 2010.

    Google Scholar 

  100. Czeisler CA, Moore-Ede MC, Coleman RH. Rotating shift work schedules that disrupt sleep are improved by applying circadian principles. Science. 1982;217(4558):460–3.

    CAS  PubMed  Google Scholar 

  101. Caldwell JA. Crew schedules, sleep deprivation, and aviation performance. Curr Dir Psychol Sci. 2012;21(2):85–9.

    Google Scholar 

  102. Stepanski and Wyatt. Use of sleep hygiene in the treatment of insomnia. Sleep Med Rev. 2003;7(3):215–25.

    PubMed  Google Scholar 

  103. Whitson PA, Putcha L, Chen Y, et al. Melatonin and cortisol assessment of circadian shifts in astronauts before flight. J Pharm Sci. 1995;18:141–7.

    CAS  Google Scholar 

  104. Brainard GC, Hanifin JM, Greeson BB, Glickman G, Gerner E, Rollag MD. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Brainard G, Hanifin J. Photons, clocks, and consciousness. J Biol Rhythm. 2005;20:314–25.

    CAS  Google Scholar 

  106. Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med. 2010;2(31):31–3.

    Google Scholar 

  107. Thapan K, Arendt J, Skene D. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535:261–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, Orgül S, Wirz-Justice A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab. 2005;90(3):1311–6.

    CAS  PubMed  Google Scholar 

  109. Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006;29(2):161–8.

    PubMed  Google Scholar 

  110. Lehrl S, Gerstmeyer K, Jacob J, Frieling H, Henkel A, Meyrer R, Wiltfang J, Kornhuber J, Bleich S. Blue light improves cognitive performance. J Neural Transm. 2007;114(4):457–60.

    CAS  PubMed  Google Scholar 

  111. Brainard GC, Coyle W, Ayers M, Kemp J, Warfield B, Maida J, Bowen C, Bernecker C, Lockley SW, Hanifin JP. Solid-state lighting for the International Space Station: tests of visual performance and melatonin regulation. Acta Astronautica. 2012 November;92(1):21–8.

    Google Scholar 

  112. Caldwell JA, Caldwell JL. Fatigue in military aviation: an overview of US military-approved pharmacological countermeasures. Aviat Space Environ Med. 2005;76(7):C39–51.

    PubMed  Google Scholar 

  113. Holst SC, Valomon A, Landolt H-P. Sleep pharmacogenetics: personalized sleep-wake therapy. Annu Rev Pharmacol Toxicol. 2016;56(1):577–603. https://doi.org/10.1146/annurev-pharmtox-010715-103801.

    Article  CAS  PubMed  Google Scholar 

  114. Ramsey CS, Werchan PM, Isdahl WM, Fischer J, Gibbons JA. Acceleration tolerance at night with acute fatigue and stimulants. Aviat Space Environ Med. 2008;79(8):769–73.

    PubMed  Google Scholar 

  115. Takasu NN, Toichi M, Nakamura W. Importance of regular lifestyle with daytime bright light exposure on circadian rhythm sleep–wake disorders in pervasive developmental disorders. Jpn Dental Sci Rev. August 2011;47(2):141–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smith L. Johnston III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnston, S.L., Whitmire, A., Marshburn, T.H., Putcha, L. (2019). Sleep, Circadian Rhythms, and Fatigue Management in Space Flight Operations. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics