Skip to main content

Yeasts in Fruit Wine Fermentation

  • Chapter
  • First Online:
Book cover Yeasts in the Production of Wine
  • 1542 Accesses

Abstract

Various fruits have been investigated both commercially and scientifically as alternatives for winemaking, resulting in products so-called fruit wines. Availability of fruits differ between cultivation areas and climatic conditions, thus fruit juices present very diverse environments in which yeasts can grow and produce ethanol, resulting in beverages quite different from traditional grape wines. Various factors affect overall quality of a particular fruit wine and these must be employed to fully optimize the final product. Most fruits contain lower sugar levels than grape juice and the finished wines generally have lower alcohol contents. Other nutrients in the juice also determine the suitability of the fruit for yeast fermentation. Pre-treatment of fruit juices such as pasteurization, chaptalization and acidity adjustment will influence subsequent yeast growth and production of flavor compounds. Microbial ecology of fresh juices and the use of yeast starter, either as single or mixed cultures significantly determine the flavor profile of the product. In this Chapter, these factors are discussed and examples of research on these topics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akubor, P. I. (1996). The suitability of African bush mango juice for wine production. Plant Foods for Human Nutrition, 49(3), 213–219.

    Article  CAS  Google Scholar 

  • Baidya, D., Chakraborty, I., & Saha, J. (2016). Table wine from tropical fruits utilizing natural yeast isolates. Journal of Food Science and Technology, 53(3), 1663–1669.

    Article  CAS  Google Scholar 

  • Berenguer, M., Vegara, S., Barrajón, E., Saura, D., Valero, M., & Martí, N. (2016). Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chemistry, 190, 848–855.

    Article  CAS  Google Scholar 

  • Cerrillo, I., Escudero-López, B., Hornero-Méndez, D., Martín, F., & Fernández-Pachón, M. S. (2014). Effect of alcoholic fermentation on the carotenoid composition and provitamin A content of orange juice. Journal of Agricultural and Food Chemistry, 62(4), 842–849.

    Article  CAS  Google Scholar 

  • Cerrillo, I., Fernández-Pachón, M. S., Collado-González, J., Escudero-López, B., Berná, G., Herrero-Martín, G., Martín, F., Ferreres, F., & Gil-Izquierdo, A. (2015). Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Foods for Human Nutrition, 70(2), 153–159.

    Article  CAS  Google Scholar 

  • Chanprasartsuk, O., & Prakitchaiwattana, C. (2015). Impacts of Allochthonous and autochthonous yeast starters: Case studies in fruit wine fermentations. In E. Perkins (Ed.), Food microbiology: Fundamentals, challenges and health implications (pp. 117–160). New York: Nova Publisher.

    Google Scholar 

  • Chanprasartsuk, O., Prakitchaiwattana, C., Sanguandeekul, R., & Fleet, G. H. (2010). Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresource Technology, 101(19), 7500–7509.

    Article  CAS  Google Scholar 

  • Chen, D., Yap, Z. Y., & Liu, S. Q. (2015). Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. International Journal of Food Microbiology, 206, 45–50.

    Article  CAS  Google Scholar 

  • Coton, E., Coton, M., Levert, D., Casaregola, S., & Sohier, D. (2016). Yeast ecology in French cider and black olive natural fermentations. International Journal of Food Microbiology, 108, 130–135.

    Article  Google Scholar 

  • Cousin, F. J., Le Guellec, R., Schlusselhuber, M., Dalmasso, M., Laplace, J. M., & Cretenet, M. (2017). Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms, 5(3), 39.

    Article  Google Scholar 

  • Dellacassa, E., Trenchs, O., Fariña, L., Debernardis, F., Perez, G., Boido, E., & Carrau, F. (2017). Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora. International Journal of Food Microbiology, 241, 161–167.

    Article  CAS  Google Scholar 

  • Duarte, W. F., Dragone, G., Dias, D. R., Oliveira, J. M., Teixeira, J. A., Silva, J. B., & Schwan, R. F. (2010). Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). International Journal of Food Microbiology, 143(3), 173–182.

    Article  CAS  Google Scholar 

  • Escudero-López, B., Cerrillo, I., Gil-Izquierdo, Á., Hornero-Méndez, D., Herrero-Martín, G., Berná, G., Medina, S., Ferreres, F., Martín, F., & Fernández-Pachón, M. S. (2016). Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 67(7), 779–788.

    Article  Google Scholar 

  • Escudero-López, B., Ortega, Á., Cerrillo, I., Rodríguez-Griñolo, M. R., Muñoz-Hernández, R., Macher, H. C., Martín, F., Hornero-Méndez, D., Mena, P., Del Rio, D., & Fernández-Pachón, M. S. (2018). Consumption of orange fermented beverage improves antioxidant status and reduces peroxidation lipid and inflammatory markers in healthy humans. Journal of Science and Food Agriculture, 98(7), 2777–2786.

    Article  Google Scholar 

  • Farh, M. E., Cho, Y., Lim, J. Y., & Seo, J. A. (2017). A diversity study of Saccharomycopsis fibuligera in rice wine starter nuruk, reveals the evolutionary process associated with its interspecies hybrid. Journal of Microbiology, 55(5), 337–343.

    Article  CAS  Google Scholar 

  • Fleet, G. H. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86(1–2), 11–22.

    Article  CAS  Google Scholar 

  • Fleet, G. H. (2008). Wine yeasts for the future. FEMS Yeast Research, 8(7), 979–995.

    Article  CAS  Google Scholar 

  • Fleet, G. H., & Heard, G. (1993). Yeasts-growth during fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 27–54). Chur: Harwood Academic Publishers.

    Google Scholar 

  • González Flores, M., Rodríguez, M. E., Oteiza, J. M., Barbagelata, R. J., & Lopes, C. A. (2017). Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. International Journal of Food Microbiology, 249, 9–17.

    Article  Google Scholar 

  • Herrero, M., García, L. A., & Díaz, M. (2003). The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation. Journal of Agricultural and Food Chemistry, 51(11), 3455–3459.

    Article  CAS  Google Scholar 

  • Jitjaroen, W. (2007). Influence of yeast strains and nutritive supplements on enological characteristics of tropical fruit wines. Göttingen: Cuvillier Verlag.

    Google Scholar 

  • Kalkan Yildirim, H. (2006). Evaluation of colour parameters and antioxidant activities of fruit wines. International Journal of Food Sciences and Nutrition, 57(1–2), 47–63.

    Article  Google Scholar 

  • Lee, P. R., Ong, Y. L., Yu, B., Curran, P., & Liu, S. Q. (2010). Profile of volatile compounds during papaya juice fermentation by a mixed culture of Saccharomyces cerevisiae and Williopsis saturnus. Food Microbiology, 27(7), 853–861.

    Article  CAS  Google Scholar 

  • Lee, P. R., Kho, S. H., Yu, B., Curran, P., & Liu, S. Q. (2013). Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae. Microbial Biotechnology, 6(4), 385–393.

    Article  Google Scholar 

  • Li, X., Chan, L. J., Yu, B., Curran, P., & Liu, S. Q. (2012). Fermentation of three varieties of mango juices with a mixture of Saccharomyces cerevisiae and Williopsis saturnus var. mrakii. International Journal of Food Microbiology, 158(1), 28–35.

    Article  CAS  Google Scholar 

  • Ljevar, A., Ćurko, N., Tomašević, M., Radošević, K., Srček, V. G., & Ganić, K. K. (2016). Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technology and Biotechnology, 54(2), 145–155.

    Article  CAS  Google Scholar 

  • Lu, Y., Chan, L., Li, X., & Liu, S. (2017a). Effects of sugar concentration on mango wine composition fermented by Saccharomyces cerevisiae MERIT.Ferm. Food Science and Technology, 53(1), 199–208.

    Google Scholar 

  • Lu, Y., Voon, M. K., Huang, D., Lee, P. R., & Liu, S. Q. (2017b). Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 101(7), 3005–3014.

    Article  CAS  Google Scholar 

  • Minnaar, P. P., Jolly, N. P., Paulsen, V., Du Plessis, H. W., & Van Der Rijst, M. (2017). Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. International Journal of Food Microbiology, 257, 232–237.

    Article  CAS  Google Scholar 

  • Morrissey, W. F., Davenport, B., Querol, A., & Dobson, A. D. (2004). The role of indigenous yeasts in traditional Irish cider fermentations. Journal of Applied Microbiology, 97(3), 647–655.

    Article  CAS  Google Scholar 

  • Nyanga, L. K., Nout, M. J., Smid, E. J., Boekhout, T., & Zwietering, M. H. (2013). Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits. International Journal of Food Microbiology, 166(3), 426–432.

    Article  CAS  Google Scholar 

  • Ortiz, J., Marín-Arroyo, M. R., Noriega-Domínguez, M. J., Navarro, M., & Arozarena, I. (2013). Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth.), and apple wines from Ecuador. Journal of Food Science, 78(7), C985–C993.

    Article  CAS  Google Scholar 

  • Ouoba, L. I., Kando, C., Parkouda, C., Sawadogo-Lingani, H., Diawara, B., & Sutherland, J. P. (2012). The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: Identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. Journal of Applied Microbiology, 113(6), 1428–1441.

    Article  CAS  Google Scholar 

  • Peng, B., Li, F., Cui, L., & Guo, Y. (2015). Effects of fermentation temperature on key aroma compounds and sensory properties of apple wine. Journal of Food Science, 80(12), S2937–S2943.

    Article  CAS  Google Scholar 

  • Prakitchaiwattana, C., & Tananuwong, K. (2011). Wines from tropical plants: Processing, microbiological, chemical and health aspects. In A. S. Peeters (Ed.), Wine type, production and health (pp. 1–5). New York: Nova Science Publishers.

    Google Scholar 

  • Rankine, B. C. (2004). Making good wine (p. 318). Sydney: Pan Macmillan.

    Google Scholar 

  • Reddy, L. V. A., & Reddy, O. V. S. (2011). Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food and Bioproducts Processing, 89(4), 487–491.

    Article  CAS  Google Scholar 

  • Reed, G., & Nagodawithana, T. W. (1988). Technology of yeast usage in winemaking. American Journal of Enology and Viticulture, 39, 83–90.

    CAS  Google Scholar 

  • Rodríguez, M. E., Pérez-Través, L., Sangorrín, M. P., Barrio, E., Querol, A., & Lopes, C. A. (2017). Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia. FEMS Yeast Research, 17(1).

    Google Scholar 

  • Rodríguez-Lerma, G. K., Gutiérrez-Moreno, K., Cárdenas-Manríquez, M., Botello-Álvarez, E., Jiménez-Islas, H., Rico-Martínez, R., & Navarrete-Bolaños, J. L. (2011). Microbial ecology studies of spontaneous fermentation: Starter culture selection for prickly pear wine production. Journal of Food Science, 76(6), M346–M352.

    Article  Google Scholar 

  • Satora, P., Tarko, T., Sroka, P., & Blaszczyk, U. (2014). The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Research, 14(5), 729–740.

    Article  CAS  Google Scholar 

  • Satora, P., Semik-Szczurak, D., Tarko, T., & Bułdys, A. (2018). Influence of selected Saccharomyces and Schizosaccharomyces strains and their mixed cultures on chemical composition of apple wines. Journal of Food Science, 83(2), 424–431.

    Article  CAS  Google Scholar 

  • Srikanta, A. H., Kumar, A., Sukhdeo, S. V., Peddha, M. S., & Govindaswamy, V. (2016). The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats. Food & Function, 7(10), 4422–4431.

    Article  CAS  Google Scholar 

  • Stringini, M., Comitini, F., Taccari, M., & Ciani, M. (2009). Yeast diversity during tapping and fermentation of palm wine from Cameroon. Food Microbiology, 26(4), 415–420.

    Article  CAS  Google Scholar 

  • Sun, S. Y., Gong, H. S., Jiang, X. M., & Zhao, Y. P. (2014). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiology, 44, 15–23.

    Article  CAS  Google Scholar 

  • Thanh, V. N., Thuy, N. T., Chi, N. T., Hien, D. D., Ha, B. T., Luong, D. T., Ngoc, P. D., & Ty, P. V. (2016). New insight into microbial diversity and functions in traditional Vietnamese alcoholic fermentation. International Journal of Food Microbiology, 232, 15–21.

    Article  CAS  Google Scholar 

  • Won, S. Y., Seo, J. S., Kwak, H. S., Lee, Y., Kim, M., Shim, H. S., & Jeong, Y. (2015). Quality characteristics and quantification of acetaldehyde and methanol in apple wine fermentation by various pre-treatments of mash. Preventive Nutrition and Food Science, 20(4), 292–297.

    Article  CAS  Google Scholar 

  • Ye, M., Yue, T., & Yuan, Y. (2014). Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation. FEMS Yeast Research, 14(6), 873–882.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charoen Charoenchai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charoenchai, C. (2019). Yeasts in Fruit Wine Fermentation. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_15

Download citation

Publish with us

Policies and ethics