Skip to main content

Pathology of the Urinary System

  • Chapter
  • First Online:
Toxicologic Pathology for Non-Pathologists

Abstract

The kidney is one of the most common organs for drug- or chemical-induced toxicities to occur, and nephrotoxicosis remains an important clinical concern in human patients. Laboratory animals utilized in clinical studies successfully predict human renal toxicosis and may develop similar renal pathology at appropriate doses. Histopathologic lesions in the kidney associated with nephrotoxic injury tend to fall into two major types: those affecting tubules (often by small molecules or chemical agents) and those affecting glomeruli (more often by biologic therapies). There are stereotypic morphologies in the kidney which can occur from a variety of toxic insults, and they often resemble one another. By understanding the nature of a lesion based on the nomenclature and the location provided by the pathologist, it is possible to glean some information regarding the severity, potential reversibility, and even mechanism of a particular renal toxin. Just as importantly, familiarity with common spontaneous background lesions in rodents and other laboratory animals used in toxicologic studies provides a basis to discount the clinical relevance of such lesions. Successful interpretation and translation of nonclinical kidney toxicity data depends on understanding dose and exposure relationships, renal clearance and absorption, and species selectivity related to a given test article, as well as comorbidities, and potential drug interactions associated with the patient or susceptible population. New experimental modalities and novel biomarkers are being utilized to augment traditional kidney-related endpoints in toxicity studies and explore potential pathophysiologic mechanisms of nephrotoxins to better inform the clinical safety of test articles and help drive decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Mirza MM, Ganti AK, Tendulkar K (2015) Renal toxicities of targeted therapies. Target Oncol 10:487–499

    Article  PubMed  Google Scholar 

  • Adams LE, Roberts SM, Donovan-Brand R, Zimmer H, Hess EV (1993) Study of procainamide hapten-specific antibodies in rabbits and humans. Int J Immunopharmacol 15:887–897

    Article  CAS  PubMed  Google Scholar 

  • Almanzar MM, Frazier KS, Dube PH, Piqueras AI, Jones WK, Charette MF, Paredes AL (1998) Expression of OP-1 is selectively modified after acute ischemic renal injury. J Am Soc Nephrol 9:1456–1463

    CAS  PubMed  Google Scholar 

  • Anders MW (1980) Metabolism of drugs in kidney. Kidney Int 18:636–647

    Article  CAS  PubMed  Google Scholar 

  • Arts HH, Knoers VAM (2013) Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol 28:863–874

    Article  PubMed  Google Scholar 

  • Barthold SW (1998) Chronic progressive nephropathy, rat. In: Jones TC, Hard GC, Mohr U (eds) Monographs on pathology of laboratory animals. Urinary system, 2nd edn. Springer-Verlag, Berlin, pp 228–233

    Google Scholar 

  • Bendele AM, Buenger DA, Mcgrath JP, Schmalz CA, Hanasono GK (1994) Chronic toxicity, metabolism, and pharmacokinetics of the 5-HT3 receptor antagonist zatosetron (LY277359) in Fischer 344 rats. Fundam Appl Toxicol 22:494–504

    Article  CAS  PubMed  Google Scholar 

  • Bendele M (1988) Urologic syndrome, mouse. In: Jones TC, Hard GC, Mohr U (eds) Urinary system, 2nd edn. Springer-Verlag, Berlin, pp 456–462

    Google Scholar 

  • Bertani T, Poggi A, Pozzoni R, Delaini F, Sacchi G, Thoua Y, Mecca G, Remuzzi G, Donati MB (1982) Adriamycin-induced nephrotic syndrome in rats. Lab Investig 46:16–22

    CAS  PubMed  Google Scholar 

  • Betton GR, Kenne K, Somers R, Marr A (2005) Protein biomarkers of nephrotoxicity; a review and findings with cyclosporin A, a signal transduction kinase inhibitor and N-phenylanthranilic acid. Cancer Biomark 1:59–67

    Article  CAS  PubMed  Google Scholar 

  • Boyce JT, Giddens WE Jr, Seifert R (1981) Spontaneous mesangioproliferative glomerulonephritis in pigtailed macaques (Macaca nemestrina). Vet Pathol 18(Suppl 6):82–88

    Article  CAS  PubMed  Google Scholar 

  • Cardesa A, Ribalta T (1998) Nephroblastoma, kidney, rat. In: Jones TC, Hard GC, Mohr U (eds) Monographs on pathology of laboratory animals. Urinary system, 2nd edn. Springer-Verlag, Berlin, pp 129–138

    Google Scholar 

  • Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE (2015) Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 11:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Brott D, Luo W, Gangl E, Kamend H, Fikes J, Kinter L, Valentin J-P, Bialecki R (2013) Assessment of cisplatin-induced kidney injury using an integrated rodent platform. Toxicol Appl Pharmacol 268:352–361

    Article  CAS  PubMed  Google Scholar 

  • Choudhury D, Ahmed Z (2006) Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol 2:80–91

    Article  CAS  PubMed  Google Scholar 

  • Chow BS, Allen TJ (2015) Mouse models for studying diabetic nephropathy. Curr Protoc Mouse Biol 5:85–94

    Article  PubMed  Google Scholar 

  • Christensen S, Ottensen PD (1986) Lithium-induced uremia in rats. Survival and renal function and morphology after one year. Acta Pharmacol Toxicol (Copenh) 58:339–347

    Article  CAS  Google Scholar 

  • Cianciolo R, Yoon L, Krull D, Stokes A, Rodriguez A, Jordan H, Cooper D, Falls JG, Cullen J, Kimbrough C, Berridge B (2013) Gene expression analysis and urinary biomarker assays reveal activation of tubulointerstitial injury pathways in a rodent model of chronic proteinuria (Doxorubicin nephropathy). Nephron Exp Nephrol 124:1–10

    Article  CAS  PubMed  Google Scholar 

  • Clarke JB (2010) Mechanisms of adverse drug reactions to biologics. Handb Exp Pharmacol 196:453–474

    Article  CAS  Google Scholar 

  • Cohen SM (2002) Comparative pathology of proliferative lesions of the urinary bladder. Toxicol Pathol 30:663–671

    Article  CAS  PubMed  Google Scholar 

  • Cowley AW Jr, Ryan RP, Kurth T, Skelton MM, Schock-Kusch D, Gretz N (2013) Progression of glomerular filtration rate reduction determined in conscious dahl salt-sensitive hypertensive rats. Hypertension 62:85–90

    Article  CAS  PubMed  Google Scholar 

  • Crabbs TA, Frame SR, Laast VA, Patrick DJ, Thomas J, Zimmerman B, Hardisty JF (2013) Occurrence of spontaneous amphophilic-vacuolar renal tubular tumors in Sprague-Dawley rats from subchronic toxicity studies. Toxicol Pathol 41:866–871

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Ryan DH (1998) Apoptosis in the kidney. Toxicol Pathol 26:810–825

    Article  CAS  PubMed  Google Scholar 

  • Decker JH, Dochterman LW, Niquette AL, Brej M (2012) Association of renal tubular hyaline droplets with lymphoma in CD-1 mice. Toxicol Pathol 40:651–655

    Article  PubMed  Google Scholar 

  • Dereure O, Navarro R, Rossi JF, Guilhou JJ (2001) Rituximab induced vasculitis. Dermatology 203:83–84

    Article  CAS  PubMed  Google Scholar 

  • Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O et al (2010a) Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 28:463–469

    Article  CAS  PubMed  Google Scholar 

  • Dieterle F, Sistare F, Goodsaid F, Papaluca M, Ozer JS, Webb CP et al (2010b) Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol 28:455–462

    Article  CAS  PubMed  Google Scholar 

  • Donker AJ, Venuto RC, Vladutiu AO (1984) Effects of prolonged administration of D-penicillamine or captopril in various strains of rats. Brown Norway rats treated with D-penicillamine develop autoantibodies, circulating immune complexes, and disseminated intravascular coagulation. Clin Immunol Immunopathol 30:142–145

    Article  CAS  PubMed  Google Scholar 

  • Dorato MA, Engelhardt JA (2005) The no-observed-adverse-effect-level in drug safety evaluations: use, issues, and definition(s). Regul Toxicol Pharmacol 42:265–274

    Article  CAS  PubMed  Google Scholar 

  • Elias AD, Eder JP, Shea T, Begg CB, Frei E 3rd, Antman KH (1990) High-dose ifosfamide with mesna uroprotection: a phase I study. J Clin Oncol 8:170–178

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt JA (2016) Comparative renal toxicopathology of antisense oligonucleotides. Nucleic Acid Ther 26:199–209

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt J, Fant P, Guionaud S, Henry SP, Leach M, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Frazier KS (2015) Scientific and Regulatory Policy Committee Points-to-consider paper∗: Drug Induced Vascular Injury associated with non-small molecule therapeutics in preclinical development. Part II. Antisense oligonucleotides. Toxicol Pathol 43:935–944

    Article  CAS  PubMed  Google Scholar 

  • Ennulat D, Ringenberg M, Frazier KS (2018) Regulatory forum opinion piece: recommendations for a tiered approach to mechanistic toxicology studies of preclinical renal toxicity. Toxicol Pathol 46:636–646

    Article  PubMed  Google Scholar 

  • Everitt JI, Ross PW, Davis TW (1988) Urologic syndrome associated with wire caging in AKR mice. Lab Anim Sci 38:609–611

    CAS  PubMed  Google Scholar 

  • Frazier KS (2017) Species differences in renal development and associated developmental nephrotoxicity. Birth Defects Res 109:1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Frazier KS, Obert LA (2018) Drug-induced glomerulonephritis: the spectre of biotherapeutic and antisense oligonucleotide immune activation in the kidney. Toxicol Pathol 46:904–917

    Article  CAS  PubMed  Google Scholar 

  • Frazier KS, Seely JC (2013) Urinary system. In: Sahota PS, Popp JA, Hardisty JF, Gopinath C (eds) Toxicologic pathology: preclinical safety assessment, 1st edn. CRC Press/Taylor & Francis Pub., Boca Raton, pp 421–484

    Chapter  Google Scholar 

  • Frazier KS, Dube P, Paredes A, Styer E (2002) Connective Tissue Growth Factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation. Vet Pathol 37:328–335

    Article  Google Scholar 

  • Frazier KS, Seely JC, Hard GC, Betton GC, Burnett R, Nishikawa A, Nakatsuji S, Durchfeld-Meyer B, Bube A (2012) Proliferative and nonproliferative lesions in the rodent urinary system. Toxicol Pathol 40(4Sl):14–86

    Article  Google Scholar 

  • Frazier KS, Sobry C, Derr V, Adams MJ, Den Besten C, De Kimpe S, Francis I, Gales TL, Maguire SR, Mirabile RC, Mullins D, Palate B, Ponstein-Simarro Doorten Y, Ridings JE, Scicchitano MS, Silvano J, Woodfine J (2014) Species specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second generation antisense oligonucleotide. Toxicol Pathol 42:923–935

    Article  PubMed  CAS  Google Scholar 

  • Frazier KS, Obert LA (2018) Drug-Induced Glomerulonephritis: The Spectre of Biotherapeutic and Antisense Oligonucleotide Immune Activation in the Kidney. Toxicol Pathol 46: 904–917

    Google Scholar 

  • Frazier KS, Engelhardt J, Fant P, Guionaud S, Henry SP, Leach M, Louden C, Scicchitano MS, Weaver JL, Zabka TS (2015) Scientific and Regulatory Policy Committee Points-to-consider paper∗: Drug Induced Vascular Injury associated with non-small molecule therapeutics in preclinical development. Part I. biotherapeutics. Toxicol Pathol 43:915–934

    Article  CAS  PubMed  Google Scholar 

  • Frith CH, Eighmy JJ, Fukushima S, Cohen SM, Squire RA, Chandra M (1995) Proliferative lesions of the lower urinary tract (urinary bladder, urethra and ureters) in rats. In: Guides for toxicologic pathology. STP/ARP/AFIP, Washington, DC

    Google Scholar 

  • Gautier JC, Riefke B, Walter J, Kurth P, Mylecraine L, Guilpin V et al (2010) Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with cisplatin. Toxicol Pathol 38:943–956

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RS, Tarloff JB, Hook JB (1988) Age-related nephropathy in laboratory rats. FASEB J 2:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Gopinath C, Mowat V (2014) The urinary system. In: Gopinath C, Mowat V (eds) Atlas of toxicological pathology. Springer, New York, pp 109–129

    Chapter  Google Scholar 

  • Gopinath C, Prentice DE, Lewis DJ (1987) The urinary system. In: Atlas of experimental toxicological pathology. MTP Press Limited, Lancaster, pp 77–90

    Chapter  Google Scholar 

  • Gray JE (1977) Chronic progressive nephrosis in the albino rat. CRC Crit Rev Toxicol 5:115–144

    Article  PubMed  Google Scholar 

  • Gray JE, van Zwieten MJ, Hollander CF (1982) Early light microscopic changes of chronic progressive nephrosis in several srains of aging laboratory rats. J Gerontol 37:142–150

    Article  CAS  PubMed  Google Scholar 

  • Groseclose MR, Laffan S, Frazier KS, Hughes-Earle A, Castellino S (2015) Imaging MS: an investigation of juvenile rat nephrotoxicity associated with dabrafenib administration. J Am Soc Mass Spectrom 6:887–898

    Article  CAS  Google Scholar 

  • Gruys E, Tooten PC, Kuijpers MH (1996) Lung, ileum and heart are predilection sites for AApoII amyloid deposition in CD-1 Swiss mice used for toxicity studies. Pulmonary amyloid indicates AApoAII. Lab Anim 30:28–34

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara A, Asakawa E, Kurata Y, Sano M, Hirose M, Ito N (1992) Dose-dependent renal tubular renal tubular toxicity of Harman and norharman in male F344 rats. Toxicol Pathol 20:197–204

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Khan KN (2004) A contemporary overview of chronic progressive nephropathy in the laboratory rat, and its significance for human risk assessment. Toxicol Pathol 32:171–180

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Seely JC (2005) Recommendations for the interpretation of renal tubule proliferative lesions occurring in rat kidneys with advanced chronic progressive nephropathy (CPN). Toxicol Pathol 33:641–649

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Seely JC (2006) Histological investigation of diagnostically challenging tubule profiles in advanced chronic progressive nephropathy (CPN) in the Fischer 344 rat. Toxicol Pathol 34:941–948

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Snowden RT (1991) Hyaline droplet accumulation in rodent kidney proximal tubules: an association with histiocytic sarcoma. Toxicol Pathol 19:88–97

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Whysner J, English JC, Zang E, Williams GM (1997) Relationship of hydroquinone-associated rat renal tumors with spontaneous chronic progessisve nephropathy. Toxicol Pathol 25:132–143

    Google Scholar 

  • Hard GC, Alden CL, Bruner RH et al (1999) Non-proliferative lesions of the kidney and lower urinary tract in rats. In: Guides for toxicologic pathology. STP/ARP/AFIP, Washington, DC, pp 1–32

    Google Scholar 

  • Hard GC, Seely JC, Kissling GE, Betz LJ (2008) Spontaneous occurrence of a distinctive renal tubule tumor phenotype in rat carcinogenicity studies conducted by the National Toxicology Program. Toxicol Pathol 36:388–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Hard GC, Flake GP, Sills RC (2009) Re-evaluation of kidney histopathology from 13-week toxicity and two-year carcinogenicity studies of melamine in the F344 rat: morphologic evidence of retrograde nephropathy. Vet Pathol 46:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Hard GC, Seely JC, Betz LJ (2016) A survery of mesenchyme-related tumors of the rat kidney in the National Toxicology Program Archives, with particular reference to renal mesenchymal tumor. Toxicol Pathol 44:848–855

    Article  PubMed  Google Scholar 

  • Harpur E, Ennulat D, Hoffman D, Betton G, Gautier JC, Riefke B et al (2011) Biological qualification of biomarkers of chemical-induced renal toxicity in two strains of male rat. Toxicol Sci 122:235–252

    Article  CAS  PubMed  Google Scholar 

  • Hilliard LM, Denton KM (2016) Transcutaneous assessment of glomerular filtration rate in unanesthetized rats using a small animal imager: impact on arterial pressure, heart rate, and activity. Physiol Rep 4:e12723

    Article  PubMed Central  CAS  Google Scholar 

  • Hirokawa K (1975) Characterization of age-associated kidney disease in Wistar rats. Mech Ageing Dev 4:301–316

    Article  CAS  PubMed  Google Scholar 

  • Hoane JS, Johnson CL, Morrison JP, Elmore SA (2016) Comparison of renal amyloid and hyaline glomerulopathy in B6C3F1 mice. Toxicol Pathol 44:687–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann D, Adler M, Vaidya VS, Rached E, Mulrane L, Gallagher WM et al (2010) Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol Sci 116:8–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook JB, McCormack KM, Kluwe WM (1979) Biochemical mechanisms of nephrotoxicity. In: Hodgson E, Bend JR, Philpot RM (eds) Review in biochemical toxicology, vol 1. Elsevier, New York, pp 58–73

    Google Scholar 

  • Ikeda H, Tauchi H, Shimasaki H (1999) Age and organ difference in amount and distribution of autofluorescent granules in rats. Mech Ageing Dev 31:139–146

    Article  Google Scholar 

  • Ito Y, Matsushita K, Tsuchiya T, Kohara Y, Yoshikawa T, Sato M, Kitaura K, Matsumoto S (2014) Spontaneous nephroblastoma with lung metastasis in a rat. J Toxicol Pathol 21:91–95

    Article  Google Scholar 

  • Jeppeson G, Skydsgaard M (2014) Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol 42(2):257–266

    Google Scholar 

  • Karnik J, Chertow GM (2000) Analgesic-related renal disease: causes, patients at risk, management. J Crit Illn 15:49–58

    Google Scholar 

  • Katsanos KH, Tsianos V, Vagias I, Tsianos EV (2010) Patterns and clinical relevance of antibody responses during adalimumab therapy. Ann Gastroenterol 23:165–171

    Google Scholar 

  • Keller DA, Juberg DR, Catlin N, Farland WH, Hess FG, Wolf DC, Doerrer NG (2012) Identification and characterization of adverse effects in 21st century toxicology. Toxicol Sci 126:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KNM, Alden CL (2002) Kidney. In: Haschek WG, Rousseaux CG, Wallig MA (eds) Handbook of toxicologic pathology, 2nd edn. Academic Press, San Diego, pp 255–336

    Chapter  Google Scholar 

  • Killary K, Diaz D, Argentieri G, Dugyala R, Bowenkamp K (2009) Kidney changes after daily slow-bolus IV injection of Polyoxyl 35 Castor oil/ethanol in 5% Dextrose for 2 weeks to Wistar rats. Microsc Microanal 15 suppl S2:968–969

    Article  Google Scholar 

  • Krabe E, Williams G, Lewis R, Kimber I, Foster P (2002) Distinguishing between adverse and non-adverse effects. Exp Toxicol Pathol 54:51–55. Urban & Fischer.

    Google Scholar 

  • Kumar G, Hota D, Nahar Saikia U, Pandhi P (2000) Evaluation of analgesic efficacy, gastrotoxicity and nephrotoxicity of fixed-dose combinations of nonselective, preferential and selective cyclooxygenase inhibitors with paracetamol in rats. Exp Toxicol Pathol 62:653–662

    Article  CAS  Google Scholar 

  • Kunze E (1992) Nonneoplastic and neoplastic lesions of the urinary bladder, ureter, and renal pelvis. In: Mohr U, Dungworth CC, Capen CC (eds) Pathobiology of the aging rat. ILSI Press, Washington, DC, pp 259–284

    Google Scholar 

  • Kunze E (1998) Hyperplasia, urinary bladder, rat. In: Jones TC, GC Hard UM (eds) Monographs on pathology of laboratory animals. Urinary system, 2nd edn. Springer-Verlag, Berlin, pp 332–366

    Google Scholar 

  • Lameire N (2005) The pathophysiology of acute renal failure. Crit Care Clin 21:197–210

    Article  PubMed  Google Scholar 

  • Leach MW, Rottman JB, Hock MB, Finco D, Rojko JL, Beyer JC (2014) Immunogenicity/hypersensitivity of biologics. Toxicol Pathol 42:293–300

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Song CY (2009) Differential role of mesangial cells and podocytes in TGF-beta-induced mesangial matrix synthesis in chronic glomerular disease. Histol Histopathol 24:901–908

    CAS  PubMed  Google Scholar 

  • Lentini P, Zanoli L, Granata A, Signorelli SS, Castellino P, Dell’Aquila R (2017) Kidney and heavy metals – the role of environmental exposure (Review). Mol Med Rep 15:3413–3419

    Article  CAS  PubMed  Google Scholar 

  • Liebelt AG, Sass B, Sobel HJ, Werner RM (1989) Spontaneous nephroblastoma in a strain CE/J mouse. A case report. Toxicol Pathol 17:57–61

    Article  CAS  PubMed  Google Scholar 

  • Luke DR, Tomaszewski K, Damle B, Schlamm HT (2010) Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J Pharm Sci 99:3291–3301

    Article  CAS  PubMed  Google Scholar 

  • Maak T, Johnson V, Kau ST, Figueiredo J, Sigulum D (1979) Renal filtration, transport and metabolism of low molecular weight proteins: a review. Kidney Int 16:251–270

    Article  Google Scholar 

  • Martínez-Salgado C, López-Hernández FJ, López-Novoa JM (2007) Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 223:86–98

    Article  PubMed  CAS  Google Scholar 

  • Mattie DR, Alden CL, Newell TK, Gaworski CL, Flemming CD (1991) A 90-day continuous vapor inhalation toxicity study of JP-8 fuel followed by 20 ro 21 months of recovery in Fischer 344 rats and C57BL/6 mice. Toxicol Pathol 19:77–87

    Article  CAS  PubMed  Google Scholar 

  • McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (CPH) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A 103:6952–6957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes EF, Ernst H, Germann P-G (2015) Spontaneous nonneoplastic lesions in control Syrian hamsters in three 24-month long-term carcinogenicity studies. Toxicol Pathol 43:272–281

    Article  CAS  PubMed  Google Scholar 

  • Melnick RL, Burns KM, Ward JM, Huff J (2013) Chemically exacerbated chronic progressive nephropathy not associated with renal tubular tumor induction in rats: an evaluation based on 60 carcinogenicity studies by the National Toxicology Program. Toxicol Sci 128:346–356

    Article  CAS  Google Scholar 

  • Molon-Noblot S, Boussiquet-Leroux C, Owen RA et al (1992) Rat urinary bladder hyperplasia induced by oral administration of carbonic anhydrase inhibitiors. Toxicol Pathol 20:93–102

    Article  CAS  PubMed  Google Scholar 

  • Montgomery CA, Seely JC (1990) Kidney. In: Boorman GA, Eustis SL, Elwell MR, Montgomery CA, MacKenzie WF (eds) Pathology of the Fisher rat. Reference and atlas. Academic press, San Diego, pp 127–153

    Google Scholar 

  • Moore KL, Persaud TVN (eds) (2003) The developing human: clinically oriented embryology. WB Saunders, Philadelphia

    Google Scholar 

  • Morgan WA, Kaler B, Bach PH (1998) The role of reactive oxygen species in adriamycin and menadione-induced glomerular toxicity. Toxicol Lett 94:209–215

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Motohashi H, Hosoya T, Nakajima O, Takahashi S, Ohsako S, Aoki Y, Nishimura N, Tohyama C, Fujii-Kuriyama Y, Yamamoto M (2003) Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc Natl Acad Sci U S A 100:5652–5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutsuga M, Asaoka Y, Togashi Y, Imura N, Miyoshi T, Miyamoto Y (2013) Spontaneous accumulation of globotriaosylceramide (Gb3) in proximal renal tubules in an ICR mouse. J Toxicol Pathol 26:429–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakanuma Y, Harada K, Sato Y, Ikeda H (2010) Recent progress in the etiopathogenesis of pediatric biliary disease, particularly Caroli’s disease with congenital hepatic fibrosis and biliary atresia. Histol Histopathol 25:223–235

    CAS  PubMed  Google Scholar 

  • Neugarten J, Kasiske B, Silbiger SR et al (2002) Effects of sex on renal structure. Nephron 90:139–144

    Article  PubMed  Google Scholar 

  • Nicoletta JA, Schwartz GJ (2004) Distal renal tubular acidosis. Curr Opin Pediatr 16:194–198

    Article  PubMed  Google Scholar 

  • Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RB, Bhatnagar V (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol 10:2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura N, Matsumura F, Vogel CFA, Nishimura H, Yonemoto J, Yoshioka W, Tohyama C (2008) Critical role of cyclooxygenase-2 activation in pathogenesis of hydronephrosis caused by lactational exposure of mice to dioxin. Toxicol Appl Pharmacol 231:374–383

    Article  CAS  PubMed  Google Scholar 

  • Owen G, Smith THF, Agersborg HPK Jr (1970) Toxicity of some benzodiazepine compounds with CNS activity. Toxicol Appl Pharmacol 16:556–570

    Article  CAS  PubMed  Google Scholar 

  • Owen RA, Heywood R (1986) Age-related variations in renal structure and function in Sprague-Dawley rats. Toxicol Pathol 14:158–167

    Article  CAS  PubMed  Google Scholar 

  • Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P et al (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28:486–494

    Article  CAS  PubMed  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Palmer BF, Heinrich WL (2004) Toxic nephropathy. In: Brenner and Rector’s the kidney, 7th edn. W.B. Saunders, Philadelphia, pp 1625–1658

    Google Scholar 

  • Perazella MA (2009) Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Perey DYE, Herdman RC, Good RA (1967) Polycystic renal disease: a new experimental model. Science 158:494–496

    Article  CAS  PubMed  Google Scholar 

  • Peter CP, Burek JD, van Zwieten MJ (1986) Spontaneous nephropathies in rats. Toxicol Pathol 14:91–100

    Article  CAS  PubMed  Google Scholar 

  • Polichnowski AJ, Griffin KA, Long J, Williamson GA, Bidani AK (2013) Blood pressure-renal blood flow relationships in conscious angiotensin II- and phenylephrine-infused rats. Am J Physiol Renal Physiol 305:F1074–F1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiros Y, Vicente-Vicente L, Morales AI, Lo’pez-Novoa JM, Lopez-Hernandez FJ (2011) An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci 119:245–256

    Article  CAS  PubMed  Google Scholar 

  • Ritskes-Hoitinga J, Beynen AC (1992) Nephrocalcinosis in the rat: a literature review. Prog Food Nutr Sci 16:85–124

    CAS  PubMed  Google Scholar 

  • Rojko JL, Price-Schiavi S (2008) Physiologic IgG biodistribution, transport, and clearance: implications for monoclonal antibody products. In: Cavagnaro JA (ed) Preclinical safety evaluation of biopharmaceuticals: a science-based approach to facilitating clinical trials. Wiley, New York, pp 241–276

    Chapter  Google Scholar 

  • Rojko JL, Evans M, Price SA, Han B, Waine G, DeWitte M, Haynes J et al (2014) Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies. Toxicol Pathol 42:725–764

    Article  CAS  PubMed  Google Scholar 

  • Romen W, Bannasch P, Aterman K (1975) Toxic glomerulosclerosis. Morphology and pathogenesis. Light and electron microscopic studies of the glomerular changes in the kidney of rats poisoned by N nitrosomorpholine. Virchows Arch B Cell Pathol 19:205–219

    CAS  PubMed  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:501–507

    Article  Google Scholar 

  • Rouse RL, Zhang J, Stewart SR, Rosenzweig BA, Espandiari P, Sadrieh NK (2011) Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int 79:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Schetz M, Dasta J, Goldstein S, Golper T (2005) Drug-induced acute kidney injury. Curr Opin Crit Care 11:555–565

    Article  PubMed  Google Scholar 

  • Seely JC (1999) Kidney. In: Maronpot RR, Boorman GA, Gaul BW (eds) Pathology of the mouse. Reference and atlas. Cache River Press, Vienna, pp 207–234

    Google Scholar 

  • Seely JC, Frazier KS (2015) Regulatory forum opinion piece: dispelling confusing pathology terminology; recognition and interpretation of selected rodent renal tubule lesions. Toxicol Pathol 43:457–463

    Article  PubMed  Google Scholar 

  • Sellers RS, Khan KNM (2005) Age, sex, species differences in nephrotoxic response. In: Tarloff JB, Lash LH (eds) Toxicology of the kidney. CRC Press, Boca Raton, pp 1059–1097

    Google Scholar 

  • Short BG, Goldstein RS (1992) Nonneoplastic lesions in the kidney. In: Mohr U, Dungworth DL, Capen CC (eds) Pathobiology of the aging rat. ILSI Press, Washington, DC, pp 211–225

    Google Scholar 

  • Short BG, Burnett VL, Swenberg JM (1989) Elevated proliferation of proximal tubule cells and localization of accumulated α2u-globulin in F344 rats during exposure to unleaded gasoline or 2,2,4-trimethylpentane. Toxicol Appl Pharmacol 101:414–431

    Article  CAS  PubMed  Google Scholar 

  • Slaughter TN, Paige A, Spires D, Kojima N, Kyle PB, Garrett MR, Roman RJ, Williams JM (2013) Characterization of the development of renal injury in Type-1 diabetic Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 305:R727–R734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stills HF Jr, Bullock BC, Clarkson TB (1983) Increased atherosclerosis and glomerulonephritis in cynomolgus monkeys (Macaca fascicularis) given injections of BSA over an extended period of time. Am J Pathol 113:222–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slausen DO, Lewis RM (1979) Comparative pathology of glomerulonephritis in animals. Vet Pathol 16:135–164

    Google Scholar 

  • Suzuki S, Arnold LL, Muirhead D et al (2008) Inorganic arsenic-induced intramitochondrial granules in mouse urothelium. Toxicol Pathol 36:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Swenberg JA (1993) Alpha 2u-globulin nephropathy: review of the cellular and molecular mechanisms involved and their implications for human risk assessment. Environ Health Perspect 101(Suppl 6):39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenberg JA, Short B, Borghoff S, Strasser J, Charbonneau M (1989) The comparative pathobiology of α2u-globulin nephropathy. Toxicol Appl Pharmacol 97:35–46

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM, Larkin A, Herron A, Clubb F, Frazier KS (2012) Swine as models in biomedical research and toxicologic testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  • Tomonari Y, Kurotaki T, Sato J, Doi T, Kokoshima H, Kanno T, Tsuchitani M, Seely JC (2016) Spontaneous age-related lesions of the kidney fornices in Sprague-Dawley rats. Toxicol Pathol 44:226–232

    Article  CAS  PubMed  Google Scholar 

  • Tanner GA, Tielker MA, Connors BA, Phillips CL, Tanner JA, Evan AP (2002) Atubular glomeruli in a rat model of polycystic kidney disease. Kidney Int 62:1947–1957

    Article  PubMed  Google Scholar 

  • Tonomura Y, Tsuchiya N, Torii M, Uehara T (2010) Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology 273:53–59

    Article  CAS  PubMed  Google Scholar 

  • Travlos GS, Hard GC, Betz LJ, Kissling GE (2011) Chronic progressive nephropathy in male F344 rats in 90-day toxicity studies: its occurrence and association with renal tubule tumors in subsequent 2-year bioassays. Toxicol Pathol 39:381–389

    Article  CAS  PubMed  Google Scholar 

  • Van de Water B, Imamdi R, de Graauw M (2005) Signal transduction in renal cell repair and regeneration. In: Tarloff JB, Lash JH (eds) Toxicology of the kidney, 3rd edn. CRC Press, Boca Raton, pp 299–341

    Google Scholar 

  • Van Meer PJ, Kooijman M, Brinks V, Gispen-de Wied CC, Silva-Lima B, Moors EH, Schellekens H (2013) Immunogenicity of mAbs in nonhuman primates during nonclinical safety assessment. MAbs 5:810–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Whalen H, Shiels P, Littlejohn M, Clancy M (2016) A novel rodent model of severe renal ischemia reperfusion injury. Ren Fail 38:1694–1701

    Article  CAS  PubMed  Google Scholar 

  • Wolf DC, Hard GC (1996) Pathology of the kidneys. In: Mohr U, Dungworth DL, Capen CC, Carlton WW, Sundberg JP, Ward JM (eds) Pathobiology of the aging mouse. ILSI Press, Washington, DC, pp 331–344

    Google Scholar 

  • Xie H-G, Wang S-K, Cao C-C, Harpur E (2013) Qualified kidney biomarkers and their potential significance in drug safety evaluation and prediction. Pharmacol Ther 137:100–107

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Sato J, Kanno T, Wako Y, Tsuchitani M (2013) Morphological study of progressive glomerulonephropathy in common marmosets (Callithrix jacchus). Toxicol Pathol 41:1106–1115

    Article  PubMed  Google Scholar 

  • Yamate J, Iwaki M, Nakatsuji S, Kuwamura M, Kotani T, Sakuma S (1998) Lysozyme-containing renal tubular hyaline droplets in F344 rats bearing a rat fibrosarcoma-derived transplantable tumor. Toxicol Pathol 26:699–703

    Article  CAS  PubMed  Google Scholar 

  • Zemer D, Pras M, Sohar E, Modan M, Capbill S, Gafni J (1986) Colchicine in the prevention and treatment of amyloidosis of familial Mediterranean fever. N Engl J Med 314:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Frohlich ED (2010) Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med Chem 3:61–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall S. Frazier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frazier, K.S. (2019). Pathology of the Urinary System. In: Steinbach, T., Patrick, D., Cosenza, M. (eds) Toxicologic Pathology for Non-Pathologists. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9777-0_6

Download citation

Publish with us

Policies and ethics