Advertisement

Biophysics of RNA-Guided CRISPR Immunity

  • Luuk Loeff
  • Chirlmin JooEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Prokaryotes are constantly threatened by a large array of viruses and other mobile genetic elements. The evolutionary arms’ race between these prokaryotes and their invaders has resulted in a wide arsenal of defence mechanisms that enable the host to fight off invaders. Among these defence mechanisms is an adaptive and inheritable immune system that is conveyed through clustered regularly interspaced short palindromic repeats (CRISPRs) and their CRISPR-associated proteins (Cas). Much of the knowledge on CRISPR-Cas immunity originates from ensemble-averaged measurements. While these assays provide valuable information on the collective behaviour of the population, they mask the molecular dynamics of individual molecules. Single-molecule biophysics has emerged as a powerful tool to visualise the molecular dynamics of single proteins with high spatial and temporal resolution. Here, we review recent advances in single-molecule biophysical approaches to study the molecular mechanisms of CRISPR-Cas immunity.

Keywords

CRISPR Adaptive Immunity Cascade Cas3 Cas9 Fluorescence Force Spectroscopy Single-molecule 

Notes

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research [Vidi grant 864.14.002 ] and by a European Research Council Starting Grant under the European Union’s Seventh Framework Programme [FP7/2007–2013/ERC grant 309509].

References

  1. 1.
    Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174–182.CrossRefADSGoogle Scholar
  2. 2.
    Barrangou, R., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.CrossRefADSGoogle Scholar
  3. 3.
    Brouns, S. J. J., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 340, 216–219.Google Scholar
  4. 4.
    Marraffini, L. A., & Sontheimer, E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322, 1843–1845.CrossRefADSGoogle Scholar
  5. 5.
    Abudayyeh, O. O., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, aaf5573.CrossRefGoogle Scholar
  6. 6.
    Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry.  https://doi.org/10.1146/annurev-biochem-060815-014607.CrossRefGoogle Scholar
  7. 7.
    Cox, D. B. T., et al. (2017). RNA editing with CRISPR-Cas13. Science, 0180, 1–15.Google Scholar
  8. 8.
    Mohanraju, P., et al. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353.  https://doi.org/10.1126/science.aad5147.CrossRefGoogle Scholar
  9. 9.
    Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.CrossRefGoogle Scholar
  10. 10.
    Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346.  https://doi.org/10.1126/science.1258096.CrossRefGoogle Scholar
  11. 11.
    Pennisi, E. (2013). The CRISPR craze. Science, 341, 833–836.CrossRefADSGoogle Scholar
  12. 12.
    Makarova, K. S., et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9, 467–477.CrossRefGoogle Scholar
  13. 13.
    Makarova, K. S., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13, 722–736.CrossRefGoogle Scholar
  14. 14.
    Shmakov, S., et al. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 60, 385–397.CrossRefGoogle Scholar
  15. 15.
    Konermann, S., et al. (2018). Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 173, 665–676.e14.CrossRefGoogle Scholar
  16. 16.
    Ray, S., Widom, J. R., & Walter, N. G. Life under the microscope: Single-molecule fluorescence highlights the RNA World. Chemical Reviews.  https://doi.org/10.1021/acs.chemrev.7b00519 (in press).CrossRefGoogle Scholar
  17. 17.
    Joo, C., Fareh, M., & Narry Kim, V. (2013). Bringing single-molecule spectroscopy to macromolecular protein complexes. Trends in Biochemical Sciences, 38, 30–37.Google Scholar
  18. 18.
    Jain, A., et al. (2011). Probing cellular protein complexes using single-molecule pull-down. Nature, 473, 484–488.CrossRefADSGoogle Scholar
  19. 19.
    Fareh, M., et al. (2016). TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nature Communications, 7, 13694.CrossRefADSGoogle Scholar
  20. 20.
    Kim, B., et al. (2015). TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. The EMBO Journal, 34, 1801–1815.CrossRefGoogle Scholar
  21. 21.
    Miller, H., Zhou, Z., Shepherd, J., Wollman, A. J. M., & Leake, M. C. (2018). Reports on progress in physics single-molecule techniques in biophysics: A review of the progress in methods and applications. Reports on Progress in Physics, 81, 1–48.CrossRefGoogle Scholar
  22. 22.
    Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry, 77, 51–76.CrossRefGoogle Scholar
  23. 23.
    Cuculis, L., & Schroeder, C. M. (2017). A single-molecule view of genome editing proteins: Biophysical mechanisms for TALEs and CRISPR/Cas9. Annual Review of Chemical and Biomolecular Engineering, 8, 577–597.CrossRefGoogle Scholar
  24. 24.
    Fareh, M., et al. (2015). Single-molecule pull-down for investigating protein-nucleic acid interactions. Methods.Google Scholar
  25. 25.
    Rutkauskas, M., Krivoy, A., Szczelkun, M., Rouillon, C., & Seidel, R. (2016). Single-molecule insight into target recognition by CRISPR–Cas complexes (1st ed.). Elsevier Inc. http://dx.doi.org/10.1016/bs.mie.2016.10.001.
  26. 26.
    Singh, D., & Ha, T. Understanding the molecular mechanisms of the CRISPR toolbox using single molecule approaches. ACS Chemical Biology.  https://doi.org/10.1021/acschembio.7b00905 (in press).CrossRefGoogle Scholar
  27. 27.
    Globyte, V., Kim, S. H., & Joo, C. Single-molecule view of small RNA–guided target search and recognition. Annual Review of Biophysics.  https://doi.org/10.1146/annurev-biophys-070317-032923 (in press).CrossRefGoogle Scholar
  28. 28.
    Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5, 507–516.CrossRefGoogle Scholar
  29. 29.
    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67.CrossRefADSGoogle Scholar
  30. 30.
    Blosser, T. R., et al. (2015). Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Molecular Cell, 58, 60–70.CrossRefGoogle Scholar
  31. 31.
    Redding, S., et al. (2015). Surveillance and processing of foreign DNA by the escherichia coli CRISPR-Cas system. Cell, 163, 854–865.CrossRefGoogle Scholar
  32. 32.
    Singh, D., Sternberg, S. H., Fei, J., Doudna, J. A., & Ha, T. (2016). Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nature Communications, 7, 12778.CrossRefADSGoogle Scholar
  33. 33.
    Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A., & Yildiz, A. (2017). A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 3.  https://doi.org/10.1126/sciadv.aao0027.CrossRefGoogle Scholar
  34. 34.
    Chen, J. S., et al. (2017). Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 550, 407–410.CrossRefADSGoogle Scholar
  35. 35.
    Loeff, L., Brouns, S. J. J., & Joo, C. (2018). Repetitive DNA reeling by the Cascade-Cas3 complex in nucleotide unwinding steps. Molecular Cell, 70, 1–10.CrossRefGoogle Scholar
  36. 36.
    Brown, M. W., et al. (2017). Assembly and translocation of a CRISPR-Cas primed acquisition complex. BioRxiv.  https://doi.org/10.1101/208058.
  37. 37.
    Singh, D., et al. (2018). Mechanisms of improved specificity of engineered Cas9 s revealed by single-molecule FRET analysis. Nature Structural & Molecular Biology, 25, 347–354.CrossRefGoogle Scholar
  38. 38.
    Singh, D., et al. (2018). Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proceedings of the National Academy of Sciences of the United States of America, 1, 201718686.Google Scholar
  39. 39.
    Szczelkun, M. D., et al. (2014). Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proceedings of the National Academy of Sciences of the United States of America, 111, 9798–9803.CrossRefADSGoogle Scholar
  40. 40.
    Rutkauskas, M., et al. (2015). Directional R-loop formation by the CRISPR-cas surveillance complex cascade provides efficient off-target site rejection. Cell Reports, 10, 1534–1543.CrossRefGoogle Scholar
  41. 41.
    Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., Macrae, I. J., & Joo, C. (2015). A dynamic search process underlies microRNA targeting. Cell, 162, 96–107.CrossRefGoogle Scholar
  42. 42.
    Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D., & Serebrov, V. (2015). Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell, 162, 84–95.CrossRefGoogle Scholar
  43. 43.
    Jo, M. H., et al. (2015). Human Argonaute 2 has diverse reaction pathways on target RNAs. Molecular Cell, 59, 117–124.CrossRefGoogle Scholar
  44. 44.
    Yao, C., Sasaki, H. M., Ueda, T., Tomari, Y., & Tadakuma, H. (2015). Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Molecular Cell, 59, 125–132.CrossRefGoogle Scholar
  45. 45.
    Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, 733–740.CrossRefGoogle Scholar
  46. 46.
    Leenay, R. T., et al. (2015). Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Molecular Cell, 62, 137–147.CrossRefGoogle Scholar
  47. 47.
    Levy, A., et al. (2015). CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 520, 505–510.CrossRefADSGoogle Scholar
  48. 48.
    Jones, D. L., et al. (2017). Kinetics of dCas9 target search in Escherichia coli. Science, 357, 1420–1424.CrossRefADSGoogle Scholar
  49. 49.
    Knight, S. C., et al. (2015). Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 350, 823–826.CrossRefADSGoogle Scholar
  50. 50.
    Lohman, T. M., & Ferrari, M. E. (1994). Escherichia Coli single—Stranded Dna-binding protein: Multiple DNA binding modes and cooperativities. Annual Review of Biochemistry.Google Scholar
  51. 51.
    von Hippel, P. H., & Berg, O. G. (1986). On the specificity of DNA-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 83, 1608–1612.Google Scholar
  52. 52.
    Hayes, R. P., et al. (2016). Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature, 530, 499–503.CrossRefADSGoogle Scholar
  53. 53.
    Sashital, D. G., Wiedenheft, B., & Doudna, J. A. (2012). Mechanism of foreign DNA selection in a bacterial adaptive immune system. Molecular Cell, 46, 606–615.CrossRefGoogle Scholar
  54. 54.
    Westra, E. R., et al. (2013). Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLOS Genetics, 9.CrossRefGoogle Scholar
  55. 55.
    Globyte, V., Lee, S. H., Bae, T., Kim, J., & Joo, C. (2018). CRISPR Cas9 searches for a protospacer adjacent motif by one-dimensional diffusion. Kavli Institute of Nanoscience and Department of BioNanoScience, Delft University of Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Republic o.Google Scholar
  56. 56.
    Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513, 569–573.CrossRefADSGoogle Scholar
  57. 57.
    Jore, M. M., et al. (2011). Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural & Molecular Biology, 18, 529–536.CrossRefGoogle Scholar
  58. 58.
    Xiao, Y., et al. (2017). Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR- Cas system article structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system. Cell, 170, 48–60.e11.CrossRefGoogle Scholar
  59. 59.
    Jiang, F., et al. (2016). Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 351, 867–871.CrossRefADSGoogle Scholar
  60. 60.
    Semenova, E., et al. (2011). Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the National Academy of Sciences of the United States of America, 108, 10098–10103.CrossRefADSGoogle Scholar
  61. 61.
    Fineran, P. C., et al. (2014). Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences of the United States of America, E1629–E1638.CrossRefADSGoogle Scholar
  62. 62.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239.CrossRefGoogle Scholar
  63. 63.
    Jinek, M., et al. (2012). A programmable dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–822.CrossRefADSGoogle Scholar
  64. 64.
    Künne, T., Swarts, D. C., & Brouns, S. J. J. (2014). Planting the seed: Target recognition of short guide RNAs. Trends in Microbiology, 22, 74–83.CrossRefGoogle Scholar
  65. 65.
    Klein, M., Eslami-Mossallam, B., Arroyo, D. G., & Depken, M. (2018). Hybridization kinetics explains CRISPR-Cas Off-targeting rules. Cell Reports, 22, 1413–1423.CrossRefGoogle Scholar
  66. 66.
    Klein, M., Chandradoss, S. D., Depken, M., & Joo, C. (2016). Why Argonaute is needed to make microRNA target search fast and reliable Misha. Seminars in Cell and Developmental Biology, 1–9.Google Scholar
  67. 67.
    Schirle, N. T., Sheu-Gruttadauria, J., & MacRae, I. J. (2014). Structural basis for microRNA targeting. Science, 346, 608–613.CrossRefADSGoogle Scholar
  68. 68.
    Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C., & MacRae, I. J. (2017). Helix‐7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. The EMBO Journal, 37, e201796474.Google Scholar
  69. 69.
    Wiedenheft, B., et al. (2011). Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 477, 486–489.CrossRefADSGoogle Scholar
  70. 70.
    Jackson, R. N., et al. (2014). Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science, 345, 1473–1479.CrossRefADSGoogle Scholar
  71. 71.
    Mulepati, S., Héroux, A., & Bailey, S. (2014). Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science, 345, 1479–1484.CrossRefADSGoogle Scholar
  72. 72.
    Xue, C., et al. (2016). Conformational control of cascade interference and priming activities in CRISPR immunity short article conformational control of cascade interference and priming activities in CRISPR immunity. Molecular Cell, 64, 1–9.CrossRefGoogle Scholar
  73. 73.
    Sternberg, S. H., Lafrance, B., Kaplan, M., & Doudna, J. A. (2015). Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527, 110–113.CrossRefADSGoogle Scholar
  74. 74.
    Wu, X., et al. (2014). Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology, 32, 670–676.CrossRefGoogle Scholar
  75. 75.
    Kuscu, C., Arslan, S., Singh, R., Thorpe, J., & Adli, M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature Biotechnology, 32, 677–683.CrossRefGoogle Scholar
  76. 76.
    Zhao, H., et al. (2014). Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature, 515, 147–150.CrossRefADSGoogle Scholar
  77. 77.
    Swarts, D. C., Mosterd, C., van Passel, M. W. J., & Brouns, S. J. J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS ONE, 7, 1–7.CrossRefGoogle Scholar
  78. 78.
    Datsenko, K. A., et al. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Communications, 3, 945.CrossRefADSGoogle Scholar
  79. 79.
    Sinkunas, T., et al. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30, 1335–1342.CrossRefGoogle Scholar
  80. 80.
    Westra, E. R., et al. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Molecular Cell, 46, 595–605.CrossRefGoogle Scholar
  81. 81.
    Sinkunas, T., et al. (2013). In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. The EMBO Journal, 32, 385–394.CrossRefGoogle Scholar
  82. 82.
    Mulepati, S., & Bailey, S. (2013). In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. Journal of Biological Chemistry, 288, 22184–22192.CrossRefGoogle Scholar
  83. 83.
    Huo, Y., et al. (2014). Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nature Structural & Molecular Biology, 21, 771–777.CrossRefGoogle Scholar
  84. 84.
    Hochstrasser, M. L., et al. (2014). CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proceedings of the National Academy of Sciences of the United States of America, 111, 6618–6623.CrossRefADSGoogle Scholar
  85. 85.
    Staals, R. H. J., et al. (2016). Interference dominates and amplifies spacer acquisition in a native CRISPR-Cas system. Nature Communications, 23, 127–135.Google Scholar
  86. 86.
    Park, J., et al. (2010). PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell, 142, 544–555.CrossRefGoogle Scholar
  87. 87.
    Myong, S., Bruno, M. M., Pyle, A. M., & Ha, T. (2007). Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science, 513–517.Google Scholar
  88. 88.
    Wu, W. Q., et al. (2017). Single-molecule studies reveal reciprocating of WRN helicase core along ssDNA during DNA unwinding. Scientific Reports, 7, 1–11.CrossRefADSGoogle Scholar
  89. 89.
    Zhou, R., Zhang, J., Bochman, M. L., Zakian, V. A., & Ha, T. (2014). Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. Elife, 3, e02190.CrossRefGoogle Scholar
  90. 90.
    Budhathoki, J. B., et al. (2016). A comparative study of G-quadruplex unfolding and DNA reeling activities of human RECQ5 helicase. Biophysical Journal, 110, 2585–2596.CrossRefADSGoogle Scholar
  91. 91.
    Budhathoki, J. B., Stafford, E. J., Yodh, J. G., & Balci, H. (2015). ATP-dependent G-quadruplex unfolding by Bloom helicase exhibits low processivity. Nucleic Acids Research, 43, 5961–5970.CrossRefGoogle Scholar
  92. 92.
    Kerssemakers, J. W. J., et al. (2006). Assembly dynamics of microtubules at molecular resolution. Nature, 442, 709–712.CrossRefADSGoogle Scholar
  93. 93.
    Lee, G., Bratkowski, M. A., Ding, F., Ke, A., & Ha, T. (2012). Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science, 336, 1726–1729.CrossRefADSGoogle Scholar
  94. 94.
    Lee, G., Yoo, J., Leslie, B. J., & Ha, T. (2011). Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nature Chemical Biology, 7, 367–374.CrossRefADSGoogle Scholar
  95. 95.
    Jackson, R. N., Lavin, M., Carter, J., & Wiedenheft, B. (2014). Fitting CRISPR-associated Cas3 into the Helicase Family Tree. Current Opinion in Structural Biology, 24, 106–114.CrossRefGoogle Scholar
  96. 96.
    Fairman-Williams, M. E., Guenther, U. P., & Jankowsky, E. (2010). SF1 and SF2 helicases: Family matters. Current Opinion in Structural Biology, 20, 313–324.CrossRefGoogle Scholar
  97. 97.
    Shipman, S. L., Nivala, J., Macklis, J. D., & Church, G. M. (2016). Molecular recordings by directed CRISPR spacer acquisition. Science, 353.  https://doi.org/10.1126/science.aaf1175.CrossRefGoogle Scholar
  98. 98.
    Sheth, R. U., Yim, S. S., Wu, F. L., & Wang, H. H. (2017). Multiplex recording of cellular events over time on CRISPR biological tape. Science, 1461, 1–9.Google Scholar
  99. 99.
    Liu, L., et al. (2017). The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell, 170, 714–726.e10.CrossRefGoogle Scholar
  100. 100.
    Fonfara, I., Richter, H., BratoviÄ, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532, 517–521.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kavli Institute of Nanoscience and Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations