Skip to main content

Application of Lignin in Thermoplastic Materials

  • Reference work entry
  • First Online:
Green Chemistry and Chemical Engineering
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology,

Glossary

Lignin:

An abundant biopolymer with a high carbon content and high aromaticity.

Thermoplastic Materials:

Become pliable or moldable above a specific temperature and solidifies upon cooling.

Biodegradability:

The disintegration of mate rials by bacteria, fungi, or other biological means.

Definition of the Subject

Lignin is an abundant and inexpensive natural polymer with high thermal stability, stiffness, biodegradability, antioxidant capacity, and ultraviolet radiation absorption properties; thus, it can be used in wide range of applications. However, approaches to bring about the value-added utilization of lignin have been extensively sought for decades. Recently, the development of lignin-based thermoplastic has attracted the attention of researchers worldwide. With the present development of lignin-based thermoplastics in mind, this review mainly focuses on three aspects of the technical issues associated with lignin-based thermoplastics and their prospective applications,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKD:

Alkyl Ketene Dimer

ASA:

Alkenyl Succinic Acid Anhydride

ASTM:

American Society for Testing and Materials

BML:

Ball-Milled Lignin

CTMAB:

Cetyl Trimethyl Ammonium Bromide

DDSA:

Dodecenyl Succinic Anhydride

DMC:

Dimethyl Carbonate

DMF:

Dimethyl Formamide

DMS:

Dimethyl Sulfate

EAA:

Ethylene Acrylic Acid

EHL:

Enzymatic Hydrolysis Lignin

EVOH:

Ethylene-Vinyl Alcohol

HDPE:

High-density Polyethylene

IL:

Ionic Liquid Lignins

KH550:

Aminopropyltriethoxysilane

KL:

Kraft Lignin

LDPE:

Low-density Polyethylene

LS:

Lignosulphonates

MDI:

Methylene Diphenyl Diisocyanate

MAH:

Maleic Anhydride

MSL:

Methanol Soluble Lignin

OL:

Organosolv Lignin

PBAT:

Poly(Butylene Adipate-co-Terephthalate)

PBA:

Poly(butylene adipate)

PBT:

Poly(butylene terephthalate)

PEO:

Poly(ethylene oxide)

PE:

Polyethylene

PEG:

Poly(Ethylene Glycol)

PE-b-PEG:

Polyethylene-block-Poly(ethylene glycol)

PET:

Poly(ethylene terephthalate)

PHB:

Poly-3-hydroxybutyrate

PLA:

Poly(lactic acid)

PP:

Polypropylene

PTMG:

Poly(Trimethylene Glutarate)

PVA:

Poly(vinyl alcohol)

SF:

Soy Flour

SL:

Soda Lignin

SHL:

Star-like Hydroxypropyl Lignin

SPC:

Soyprotein Concentrate

SPI:

Soyprotein Isolates

TPS:

Thermoplastic Starch

TBBP-A:

Tetrabromobisphenol A

TBDMSCL:

Tert-butyldimethylsilyl Chloride

Tg:

Glass Transition Temperature

Bibliography

Primary Literature

  1. Smita R, Upendranath D (2008) Manipulation of lignin in plants with special reference to o-methyltransferase. Plant Sci 174(3):264–277

    Article  CAS  Google Scholar 

  2. Gosselink RJA, Jong ED, Guran B, Abächerli A (2004) Co-ordination network for lignin – standardisation, production and applications adapted to market requirements (eurolignin). Ind Crop Prod 20(2):121–129

    Article  CAS  Google Scholar 

  3. Sen S, Patil S, Argyropoulos DS (2016) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 47(1):4862–4887

    Google Scholar 

  4. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259

    Article  CAS  Google Scholar 

  5. Lochab B, Shukla S, Varma I (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4(42):21712–21752

    Article  CAS  Google Scholar 

  6. Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reaction. Wiley-Interscience, New York

    Google Scholar 

  7. Sun R, Lawther JM, Banks WB (1997) A tentative chemical structure of wheat straw lignin. Ind Crop Prod 6(1):1–8

    Article  CAS  Google Scholar 

  8. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259

    Article  CAS  Google Scholar 

  9. Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93(Pt A):296–131

    Article  CAS  PubMed  Google Scholar 

  10. Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687

    Article  CAS  PubMed  Google Scholar 

  11. Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols–a mechanistic analysis. J Org Chem 79(17):8348–8357

    Article  CAS  PubMed  Google Scholar 

  12. Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310(1):57–73

    Article  CAS  PubMed  Google Scholar 

  13. Funakoshi H, Shiraish N, Norimoto M, Aoki T, Hayashi H (1979) Studies on the thermoplasticization of wood. Holzforschung 33(5):159–166

    Article  CAS  Google Scholar 

  14. Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33(9):1122–1130

    Article  CAS  Google Scholar 

  15. Jeong H, Park J, Kim S, Lee J, Ahn N, Roh HG (2013) Preparation and characterization of thermoplastic polyurethanes using partially acetylated Kraft lignin. Fibers Polym 14(7):1082–1093

    Article  CAS  Google Scholar 

  16. Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. Part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720

    Article  CAS  Google Scholar 

  17. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81(1):9–18

    Article  CAS  Google Scholar 

  18. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2221

    Article  CAS  PubMed  Google Scholar 

  19. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98(8):1655–1663

    Article  CAS  PubMed  Google Scholar 

  20. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568

    Google Scholar 

  21. Chakar FS, Ragauskas AJ, Abaecherli A, Guran B, Gosselink RJ, Jong DD (2004) Review of current and future softwood Kraft lignin process chemistry. Ind Crop Prod 20(2):131–141

    Article  CAS  Google Scholar 

  22. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568

    Google Scholar 

  23. Fang W, Alekhina M, Ershova O, Heikkinen S, Sixta H (2015) Purification and characterization of Kraft lignin. J Mol Biol 367(4):1023–1033

    Google Scholar 

  24. Fan J, Zhan HY (2008) Optimization of synthesis of spherical lignosulphonate resin and its structure characterization. Chin J Chem Eng 16(3):407–410

    Article  CAS  Google Scholar 

  25. Myrvold BO (2008) A new model for the structure of lignosulphonates: part 1. Behaviour in dilute solutions. Ind Crop Prod 27(2):214–219

    Article  CAS  Google Scholar 

  26. Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. part ii: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164

    Article  PubMed  CAS  Google Scholar 

  27. Li MF, Sun SN, Xu F, Sun RC (2012) Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep Purif Technol 101(16):18–25

    Article  CAS  Google Scholar 

  28. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48

    Article  CAS  Google Scholar 

  29. Suhas, Carrott PJ, Ribeiro Carrott MM (2007) Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol 98(12):2301–2312

    Article  CAS  PubMed  Google Scholar 

  30. Muhammad N, Man Z, Mohamad Azmi BK (2012) Ionic liquid- a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70(1–3):125–133

    Article  CAS  Google Scholar 

  31. Mandavgane SA, Paradkar GD, Varu J, Pamar R, Subramanian D (2007) Desilication of agro based black liquor and green liquor using jet loop reactor. Indian J Chem Technol 14(6):606–610

    CAS  Google Scholar 

  32. Tafti SF, Tabarsi P, Mansouri N, Mirsaeidi M, Motazedi Ghajar MA, Karimi S (2006) Chronic granulomatous disease with unusual clinical manifestation, outcome, and pattern of inheritance in an iranian family. J Clin Immunol 26(3):291–296

    Article  PubMed  Google Scholar 

  33. Öhman F (2006) Precipitation and separation of lignin from Kraft Black Liquor. PhD thesis, Chalmers University of Technology, Gothenburg

    Google Scholar 

  34. Meryemoglu B, Hesenov A, Irmak S, Atanur OM, Erbatur O (2010) Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int J Hydrogen Energy 35(22):12580–12587

    Article  CAS  Google Scholar 

  35. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3(11):1227–1235

    Article  CAS  PubMed  Google Scholar 

  36. Nofar M, Heuzey MC, Carreau PJ, Kamal MR, Randall J (2016) Coalescence in pla-pbat blends under shear flow: effects of blend preparation and pla molecular weight. J Rheol 60(4):637–648

    Article  CAS  Google Scholar 

  37. Argyropoulos DS (2014) The emerging bio-refinery industry needs to refine lignin prior to use. J Biotechnol 4(1):125–126

    Google Scholar 

  38. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  39. Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83(45):155–165

    Article  CAS  Google Scholar 

  40. Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal & polymer characteristics of Kraft lignin & derivatives. Bioresources 8(1):864–886

    Article  Google Scholar 

  41. Wiermans L, Schumacher H, Klaaen CM, Dominguezdemaria P (2014) Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Adv 5(6):4009–4018

    Article  Google Scholar 

  42. Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720

    Article  CAS  Google Scholar 

  43. Kumar P, Srivastava VC, Mishra IM (2015) Dimethyl carbonate synthesis via, transesterification of propylene carbonate with methanol by ceria-zinc catalysts: role of catalyst support and reaction parameters. Korean J Chem Eng 32(9):1774–1783

    Article  CAS  Google Scholar 

  44. Argyropoulos DS, Sen S, Patil S (2015) Methylation of softwood Kraft lignin with dimethyl carbonate. Green Chem 17(2):1077–1087

    Article  CAS  Google Scholar 

  45. Stanley JNG, Selva M, Masters AF, Maschmeyer T, Perosa A (2013) Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks. Green Chem 15(11):3195–3204

    Article  CAS  Google Scholar 

  46. Memoli S, Selva M, Tundo P (2001) Dimethylcarbonate for eco-friendly methylation reactions. Chemosphere 43(1):115–121

    Article  CAS  PubMed  Google Scholar 

  47. Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21. Synthesis and properties of epoxidized lignin-poly(propylene oxide) copolymers. J Wood Chem Technol 13(1):73–95

    Article  CAS  Google Scholar 

  48. Ahvazi B, Wojciechowicz O, Tonthat TM, Hawari J (2011) Preparation of lignopolyols from wheat straw soda lignin. J Agric Food Chem 59(19):10505–10516

    Article  CAS  PubMed  Google Scholar 

  49. Hatakeyama H, Tsujimoto Y, Zarubin MJ, Krutov SM, Hatakeyama T (2010) Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Calorim 101(1):289–295

    Article  CAS  Google Scholar 

  50. Buono P, Duval A, Verge P, Averous L, Habibi Y (2016) New insights on the chemical modification of lignin: acetylation versus silylation. ACS Sustain Chem Eng 4(10):5212–5222

    Article  CAS  Google Scholar 

  51. Corey EJ, Shirahama H, Yamamoto H, Terashima S, Venkateswarlu A, Schaaf TK (1971) Stereospecific total synthesis of prostaglandins e3 and f3.alpha. J Am Chem Soc 93(6):1490–1491

    Article  CAS  PubMed  Google Scholar 

  52. Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols – a mechanistic analysis. J Org Chem 79(17):8348–8357

    Article  CAS  PubMed  Google Scholar 

  53. Lewis WK, Gilliland ER, Bauer WC (2002) Characteristics of fluidized particles. J Ind Eng Chem 41(6):1104–1117

    Article  Google Scholar 

  54. Glasser WG, Gratzl JS, Collins JJ, Forss K, Mccarthy JL (2002) Lignin. xvii. preparation and characterization of acetyl lignin sulfonate methyl esters. Macromolecules 8(5):565–573

    Article  Google Scholar 

  55. Mousavioun P, Doherty W (2010) Chemical and thermal properties of fractionated bagase soda lignin. Ind Crop Prod 31(1):52–58

    Article  CAS  Google Scholar 

  56. Fox SC, Mcdonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. Bioresources 5(2):990–1009

    Google Scholar 

  57. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of pla lignin blends. Polym Degrad Stab 108:330–338

    Article  CAS  Google Scholar 

  58. Pu Y, Ragauskas AJ (2005) Structural analysis of acetylated hardwood lignins and their photoyell. Can J Chem 83(12):2132–2139

    Article  CAS  Google Scholar 

  59. Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54(4):460–463

    Article  CAS  Google Scholar 

  60. Monteil-Rivera F, Paquet L (2015) Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crop Prod 65:446–453

    Article  CAS  Google Scholar 

  61. Cachet N, Camy S, Benjelloun-Mlayah B, Condoret JS, Delmas M (2014) Esterification of organosolv lignin under supercritical conditions. Ind Crop Prod 58(58):287–297

    Article  CAS  Google Scholar 

  62. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31(12):1068–1132

    Article  CAS  Google Scholar 

  63. Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X (2011) Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 40(3):1282–1295

    Article  CAS  PubMed  Google Scholar 

  64. Liu H, Chung H (2017) Lignin-based polymers via graft copolymerization. J Polym Sci A Polym Chem 55:3515–3528

    Article  CAS  Google Scholar 

  65. Wang DB, Li XM, Yang Q, Zeng GM, Liao DX, Zhang J (2008) Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour Technol 99(13):5466–5473

    Article  CAS  PubMed  Google Scholar 

  66. Matsushita Y, Imai M, Iwatsuki A, Fukushima K (2008) The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour Technol 99(8):3024–3028

    Article  CAS  PubMed  Google Scholar 

  67. Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromolecules 11(4):904–910

    Article  CAS  PubMed  Google Scholar 

  68. Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Ind Crop Prod 32(3):458–466

    Article  CAS  Google Scholar 

  69. Senamartins G, Almeidavara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27(2):189–195

    Article  CAS  Google Scholar 

  70. Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19(2):166–172

    Article  CAS  PubMed  Google Scholar 

  71. Rials TG, Glasser WG (1986) Engineering plastics from lignin- xiii. Effect of lignin structure on polyurethane network formation. Holzforschung 40(6):353–360

    Article  CAS  Google Scholar 

  72. Kadla JF, Kubo S (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos Part A-Appl Sci 35(3):395–400

    Article  CAS  Google Scholar 

  73. Lu X, Weiss RA (1992) Specific interactions and ionic aggregation in miscible blends of nylon-6 and zinc sulfonated polystyrene ionomer. Macromolecules 25(23):6185–6189

    Article  CAS  Google Scholar 

  74. And SK, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911

    Article  CAS  Google Scholar 

  75. And SK, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromolecules 4(3):561–567

    Article  CAS  Google Scholar 

  76. Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32(7):1019–1025

    Article  CAS  Google Scholar 

  77. Kharade AY, Kale DD (2015) Lignin-filled polyolefins. J Appl Polym Sci 72(10):1321–1326

    Article  Google Scholar 

  78. Blanco I, Bottino FA (2016) Thermal characterization of a series of novel hepta cyclopentyl bridged poss/ps nanocomposites. J Therm Anal Calorim 125(2):637–643

    Article  CAS  Google Scholar 

  79. Atifi S, Miao C, Hamad WY (2017) Surface modification of lignin for applications in polypropylene blends. J Appl Polym Sci 134(29):45103

    Article  CAS  Google Scholar 

  80. Shi Z, Fu F, Wang S, He S, Yang R (2013) Modification of chinese fir with alkyl ketene dimer (AKD): processing and characterization. Bioresources 8(1):581–591

    Google Scholar 

  81. Yang S, Zhang Y, Yu J, Zhen Z, Huang T, Tang Q (2014) Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc. Mater Des 59(6):461–465

    Article  CAS  Google Scholar 

  82. Miao C, Hamad WY (2017) Controlling lignin particle size for polymer blend applications. J Appl Polym Sci 134(14):44669

    Google Scholar 

  83. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polym Composite. Compos Part B 39(6):933–961

    Article  CAS  Google Scholar 

  84. Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood Kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3(2):349–356

    Article  CAS  Google Scholar 

  85. Cui C, Sun R, Argyropoulos DS (2014) Fractional precipitation of softwood Kraft lignin: isolation of narrow fractions common to a variety of lignins. ACS Sustain Chem Eng 2(4):959–968

    Article  CAS  Google Scholar 

  86. Podolyák B, Kun D, Renner K, Pukánszky B (2017) Hydrogen bonding interactions in poly(ethylene-co-vinyl alcohol)/lignin blends. Int J Biol Macromol 107:1203–1211

    Article  PubMed  CAS  Google Scholar 

  87. Falkehag SI (1975) Lignin in materials. Appl Polym Symp 28:247–257

    CAS  Google Scholar 

  88. Dutta S, Sarkanen S (1990) A new emphasis in strategies for developing lignin-based plastics. Mrs Proc 197(31):31–39

    Article  CAS  Google Scholar 

  89. Li Y, Mlynár J, Sarkanen S (1997) The first 85% Kraft lignin-based thermoplastics. J Polym Sci Polym Phys 35(12):1899–1910

    Article  CAS  Google Scholar 

  90. Lewis NG, Davin LB, Sarkanen S (1999) 3.18–the nature and function of lignins. Compr Nat Prod Chem 3(18):617–745

    Article  CAS  Google Scholar 

  91. Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and Kraft lignin. Macromolecules 36(20):7803–7811

    Article  CAS  Google Scholar 

  92. Yan L, Sarkanen S (2002) Alkylated Kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules 35(26):9707–9715

    Article  CAS  Google Scholar 

  93. Sarkanen S, Chen Y, Wang YY (2016) Journey to polymeric materials composed exclusively of simple lignin derivatives. ACS Sustain Chem Eng 4(10):5223–5229

    Article  CAS  Google Scholar 

  94. Bula K, Klapiszewski Ł, Jesionowski T (2015) A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym Compos 36(5):913–922

    Article  CAS  Google Scholar 

  95. Chiellini E, Solaro R (2004) Biodegradable polymers and plastics. Chem Int 26(6):28–29

    Google Scholar 

  96. Chen YR, Sarkanen S (2003) Macromolecular lignin replication: a mechanistic working hypothesis. Phytochem Rev 2(3):235–255

    Article  CAS  Google Scholar 

  97. Wang YY, Chen YR, Sarkanen S (2017) Blend configuration in functional polymeric materials with a high lignin content. Faraday Discuss 202:43–59

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Sarkanen S (2000) Thermoplastics with very high lignin contents. ACS Symp 742:351–366

    Article  CAS  Google Scholar 

  99. Wang YY, Chen Y, Sarkanen S (2015) Path to plastics composed of ligninsulphonates (lignosulfonates). Green Chem 17(11):5069–5078

    Article  CAS  Google Scholar 

  100. Wang H (2012) Research progress on biodegradable material of modified soy protein isolate. New Chem Mater 40(1):16–18

    Google Scholar 

  101. Garrison TF, Murawski A, Quirino RL (2016) Bio-based polymers with potential for biodegradability. Polymers 8(7):262–284

    Article  PubMed Central  CAS  Google Scholar 

  102. Mu C, Xue L, Zhu J, Jiang M, Zhou Z (2014) Mechanical and thermal properties of toughened poly(l-lactic) acid and lignin blends. Bioresources 9(3):5557–5566

    Article  Google Scholar 

  103. Jamshidian M, Tehrany EA, Imran M, Akhtar MJ, Cleymand F, Desobry S (2012) Structural, mechanical and barrier properties of active pla–antioxidant films. J Food Eng 110(3):380–389

    Article  CAS  Google Scholar 

  104. Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (pla) blends. Compos Sci Technol 119:20–25

    Article  CAS  Google Scholar 

  105. Zhu J, Xue L, Wei W, Mu C, Jiang M, Zhou Z (2015) Modification of lignin with silane coupling agent to improve the interface of poly(l-lactic) acid/lignin composites. Bioresources 10(3):4315–4325

    CAS  Google Scholar 

  106. Ren W, Pan X, Wang G, Cheng W, Liu Y (2016) Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chem 18(18):5008–5014

    Article  CAS  Google Scholar 

  107. Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(lactic acid): and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22(4):439–448

    Article  CAS  Google Scholar 

  108. Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2006) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Polym Eng Sci 300(3):299–311

    Google Scholar 

  109. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97(10):1979–1987

    Article  CAS  Google Scholar 

  110. Kim JT, Netravali AN (2010) Mechanical, thermal, and interfacial properties of green composites with ramie fiber and soy resins. J Agric Food Chem 58(9):5400–5407

    Article  CAS  PubMed  Google Scholar 

  111. Staswick PE, Hermodson MA, Nielsen NC (1984) The amino acid sequence of the A2B1a subunit of glycinin. J Biol Chem 259(21):13424–13430

    CAS  PubMed  Google Scholar 

  112. Sem O, Wagner JR (2002) Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Res Int 35(6):511–518

    Article  Google Scholar 

  113. Sheard PR, Fellows A, Ledward DA, Mitchell JR (1986) Macromolecular changes associated with the heat treatment of soya isolate. Int J Food Sci Technol 21(1):55–60

    Article  CAS  Google Scholar 

  114. Kato A, Tanimoto S, Muraki Y, Oda Y, Inoue Y, Kobayashi K (1994) Relationships between conformational stabilities and surface functional properties of mutant hen egg-white lysozymes constructed by genetic engineering. J Agric Food Chem 42(1):227–230

    Article  CAS  Google Scholar 

  115. Lee M, Lee S, Song KB (2005) Effect of γ-irradiation on the physicochemical properties of soy protein isolate films. Radiat Phys Chem 72(1):35–40

    Article  CAS  Google Scholar 

  116. Brandenburg AH, Weller CL, Testin RF (2010) Edible films and coatings from soy protein. J Food Sci 58(5):1086–1089

    Article  Google Scholar 

  117. Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci 131(13):378–387

    Article  CAS  Google Scholar 

  118. Park SK, Bae DH, Rhee KC (2000) Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 77(8):879–884

    Article  CAS  Google Scholar 

  119. Matsumura Y, Kang IJ, Sakamoto H, Motoki M, Mori T (1993) Filler effects of oil droplets on the viscoelastic properties of emulsion gels. Food Hydrocoll 7(3):227–240

    Article  CAS  Google Scholar 

  120. Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer 42(6):2569–2578

    Article  CAS  Google Scholar 

  121. Huang J, Zhang L, Chen F (2003) Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. J Appl Polym Sci 88(14):3284–3290

    Article  CAS  Google Scholar 

  122. Huang J, Zhang L, Wei H, Cao X (2010) Soy protein isolate/Kraft lignin composites compatibilized with methylene diphenyl diisocyanate. J Appl Polym Sci 93(2):624–629

    Article  CAS  Google Scholar 

  123. Wei M, Fan L, Huang J, Chen Y (2016) Role of star-like hydroxylpropyl lignin in soy-protein plastics. Macromol Mater Eng 291(5):524–530

    Article  CAS  Google Scholar 

  124. Kalambur S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22(1):39–58

    Article  CAS  Google Scholar 

  125. Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251

    Article  CAS  Google Scholar 

  126. Bodirlau R, Teaca CA, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B-Eng 44(1):575–583

    Article  CAS  Google Scholar 

  127. Shi R, Li B (2016) Synthesis and characterization of cross-linked starch/lignin film. Starch-Starke 68(11–12):1224–1232

    Article  CAS  Google Scholar 

  128. Kaewtatip K, Thongmee J (2013) Effect of Kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704

    Article  CAS  Google Scholar 

  129. Heitner C, Dimmel DR, Schmidt JA (2010) Lignin and lignans: advances in chemistry. Lignin and Lignans Adv Chem 397(24):521–555

    Google Scholar 

  130. Fernández-Rodríguez J, García A, Coz A, Labidi J (2015) Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration. Sep Purif Technol 152(4):172–179

    Article  CAS  Google Scholar 

  131. El Mansouri NE, Salvado J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, Kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24(1):8–16

    Article  CAS  Google Scholar 

  132. Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93(1):618–641

    Article  CAS  Google Scholar 

Books and Reviews

  1. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96

    Article  CAS  Google Scholar 

  2. Hu TQ (2002) Chemical modification, properties, and usage of lignin. Kluwer, New York

    Book  Google Scholar 

  3. Liu WJ, Hong J, Yu HQ, Bruijnincx PCA, Rinaldi R, Weckhuysen B (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17(11):4888–4907

    Article  CAS  Google Scholar 

  4. Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong-Qi Yuan or Run-Cang Sun .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, S., Yuan, TQ., Shi, Q., Sun, RC. (2019). Application of Lignin in Thermoplastic Materials. In: Han, B., Wu, T. (eds) Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9060-3_1015

Download citation

Publish with us

Policies and ethics