Skip to main content

The Role of Notch in Breast Cancer

  • 336 Accesses

Abstract

Women have a one in eight lifetime risk of being diagnosed with breast cancer. Breast cancer is the second leading cause of cancer-related mortality in women worldwide. Notch signaling is critical for proper mammary development and homeostasis. Notch is emerging as an important targetable oncogene in breast cancer. Notch signaling promotes a number of cancer phenotypes including stem cell survival, self-renewal, and differentiation. This chapter will describe research advancements and clinical implications of Notch signaling in the context of the normal mammary gland and in breast cancer. Notch is involved in cross talk with several other signaling pathways. Estrogen receptor alpha and ErbB2 are commonly overexpressed breast oncogenes. Therapies designed to target these receptors are indicated for the majority of invasive breast cancer cases. However, breast tumors are often able to overcome these therapies, and upregulation of Notch is implicated in the development of drug resistance.

Keywords

  • Breast cancer
  • Notch
  • Gamma secretase
  • Mammary
  • Breast cancer stem cell

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8859-4_9
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 9.1

References

  1. Buono, K. D., et al. (2006). The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Developmental Biology, 293(2), 565–580.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Van Keymeulen, A., et al. (2011). Distinct stem cells contribute to mammary gland development and maintenance. Nature, 479(7372), 189–193.

    PubMed  CrossRef  Google Scholar 

  3. Kleinberg, D. L., & Ruan, W. (2008). IGF-I, GH, and sex steroid effects in normal mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 13(4), 353–360.

    PubMed  CrossRef  Google Scholar 

  4. Quarrie, L. H., Addey, C. V., & Wilde, C. J. (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. Journal of Cellular Physiology, 168(3), 559–569.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Meurette, O., et al. (2009). Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Research, 69(12), 5015–5022.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Shao, S., et al. (2015). Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Molecular Cancer, 14, 28.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Angerer, L. M., & Angerer, R. C. (1999). Regulative development of the sea urchin embryo: Signalling cascades and morphogen gradients. Seminars in Cell & Developmental Biology, 10(3), 327–334.

    CAS  CrossRef  Google Scholar 

  8. Kurata, S., et al. (2000). Notch signaling and the determination of appendage identity. Proceedings of the National Academy of Sciences of the United States of America, 97(5), 2117–2122.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Zhu, X., et al. (2006). Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes & Development, 20(19), 2739–2753.

    CAS  CrossRef  Google Scholar 

  10. Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132–5137.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Chigurupati, S., et al. (2007). Involvement of notch signaling in wound healing. PLoS One, 2(11), e1167.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Petrovic, J., et al. (2014). Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development, 141(11), 2313–2324.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Barad, O., Hornstein, E., & Barkai, N. (2011). Robust selection of sensory organ precursors by the Notch-Delta pathway. Current Opinion in Cell Biology, 23(6), 663–667.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Logeat, F., et al. (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8108–8112.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Rand, M. D., et al. (2000). Calcium depletion dissociates and activates heterodimeric notch receptors. Molecular and Cellular Biology, 20(5), 1825–1835.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. D'Souza, B., Meloty-Kapella, L., & Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. Current Topics in Developmental Biology, 92, 73–129.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Hartmann, D., et al. (2002). The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human Molecular Genetics, 11(21), 2615–2624.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Sastre, M., et al. (2001). Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Reports, 2(9), 835–841.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Dontu, G., et al. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605–R615.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Lafkas, D., et al. (2013). Notch3 marks clonogenic mammary luminal progenitor cells in vivo. The Journal of Cell Biology, 203(1), 47–56.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Bouras, T., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3(4), 429–441.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Cantrell, M. A., et al. (2015). C-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget, 6(14), 11863–11881.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Domingo, L., et al. (2014). Tumor phenotype and breast density in distinct categories of interval cancer: Results of population-based mammography screening in Spain. Breast Cancer Research, 16(1), R3.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  24. Schnitt, S. J. (2010). Classification and prognosis of invasive breast cancer: From morphology to molecular taxonomy. Modern Pathology, 23(Suppl 2), S60–S64.

    PubMed  CrossRef  Google Scholar 

  25. Prat, A., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  26. Yerushalmi, R., et al. (2010). Ki67 in breast cancer: Prognostic and predictive potential. The Lancet Oncology, 11(2), 174–183.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Bastien, R. R., et al. (2012). PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Medical Genomics, 5, 44.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Gallahan, D., & Callahan, R. (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene, 14(16), 1883–1890.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Gallahan, D., Kozak, C., & Callahan, R. (1987). A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. Journal of Virology, 61(1), 218–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Reedijk, M., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research, 65(18), 8530–8537.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Yuan, X., et al. (2015). Expression of Notch1 correlates with breast cancer progression and prognosis. PLoS One, 10(6), e0131689.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Reedijk, M., et al. (2008). JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Research and Treatment, 111(3), 439–448.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Chu, D., et al. (2011). Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Annals of Oncology, 22(11), 2440–2447.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Li, L., et al. (2014). Notch-1 signaling promotes the malignant features of human breast cancer through NF-kappaB activation. PLoS One, 9(4), e95912.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Tremblay, I., et al. (2013). The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS One, 8(12), e85502.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Klinakis, A., et al. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9262–9267.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Cohen, B., et al. (2010). Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Research and Treatment, 123(1), 113–124.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Vermezovic, J., et al. (2015). Notch is a direct negative regulator of the DNA-damage response. Nature Structural & Molecular Biology, 22(5), 417–424.

    CAS  CrossRef  Google Scholar 

  39. Stylianou, S., Clarke, R. B., & Brennan, K. (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Research, 66(3), 1517–1525.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Yun, J., et al. (2015). p53 modulates Notch signaling in MCF-7 breast cancer cells by associating with the Notch transcriptional complex via MAML1. Journal of Cellular Physiology, 230(12), 3115–3127.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Early Breast Cancer Trialists’ Collaborative, G, et al. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784.

    CrossRef  Google Scholar 

  42. Deome, K. B., et al. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.

    CAS  PubMed  Google Scholar 

  43. Ricardo, S., et al. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 64(11), 937–946.

    PubMed  CrossRef  Google Scholar 

  44. Neumeister, V., et al. (2010). In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. The American Journal of Pathology, 176(5), 2131–2138.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Harrison, H., et al. (2010). Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Research, 70(2), 709–718.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Grudzien, P., et al. (2010). Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Research, 30(10), 3853–3867.

    CAS  PubMed  Google Scholar 

  47. Park, Y. H., et al. (2011). Clinical relevance of TNM staging system according to breast cancer subtypes. Annals of Oncology, 22(7), 1554–1560.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Sethi, N., et al. (2011). Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 19(2), 192–205.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. McGowan, P. M., et al. (2011). Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Molecular Cancer Research, 9(7), 834–844.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Martin, T. A., et al. (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Annals of Surgical Oncology, 12(6), 488–496.

    PubMed  CrossRef  Google Scholar 

  51. Leong, K. G., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Faronato, M., et al. (2015). DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through Notch hyper-activation. Oncotarget, 6(26), 22467–22479.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Farnie, G., et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and epidermal growth factor receptor signaling pathways. Journal of the National Cancer Institute, 99(8), 616–627.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Farnie, G., et al. (2013). Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLoS One, 8(2), e56840.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  55. Tanos, T., et al. (2012). ER and PR signaling nodes during mammary gland development. Breast Cancer Research, 14(4), 210.

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  56. Katzenellenbogen, B. S., & Katzenellenbogen, J. A. (2000). Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta: Regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Research, 2(5), 335–344.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Wardell, S. E., Marks, J. R., & McDonnell, D. P. (2011). The turnover of estrogen receptor alpha by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochemical Pharmacology, 82(2), 122–130.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Goss, P. E., & Strasser, K. (2001). Aromatase inhibitors in the treatment and prevention of breast cancer. Journal of Clinical Oncology, 19(3), 881–894.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Rizzo, P., et al. (2008). Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Research, 68(13), 5226–5235.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Hao, L., et al. (2010). Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene, 29(2), 201–213.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Simoes, B. M., et al. (2015). Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Reports, 12(12), 1968–1977.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Lombardo, Y., et al. (2014). Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Research, 16(3), R62.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  63. Arteaga, C. L., et al. (2012). Treatment of HER2-positive breast cancer: Current status and future perspectives. Nature Reviews. Clinical Oncology, 9(1), 16–32.

    CAS  CrossRef  Google Scholar 

  64. Han, M., Deng, H. Y., & Jiang, R. (2012). Effect of trastuzumab on Notch-1 signaling pathway in breast cancer SK-BR3 cells. Chinese Journal of Cancer Research, 24(3), 213–219.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Osipo, C., et al. (2008). ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene, 27(37), 5019–5032.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Abravanel, D. L., et al. (2015). Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. Journal of Clinical Investigation, 125(6), 2484–2496.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  67. Pandya, K., et al. (2016). PKCalpha attenuates Jagged-1-mediated Notch signaling in ErbB-2-positive breast cancer to reverse trastuzumab resistance. Clinical Cancer Research, 22(1), 175–186.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Manni, A., et al. (1996). Induction of a less aggressive breast cancer phenotype by protein kinase C-alpha and -beta overexpression. Cell Growth & Differentiation, 7(9), 1187–1198.

    CAS  Google Scholar 

  69. Severson, T. M., et al. (2015). BRCA1-like signature in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with therapeutic potential. Molecular Oncology, 9(8), 1528–1538.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Tommiska, J., et al. (2008). The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene, 27(17), 2501–2506.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Ross, J. S., et al. (2015). Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Research and Treatment, 154(1), 155–162.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Wang, K., et al. (2015). PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a gamma-secretase inhibitor. Clinical Cancer Research, 21(6), 1487–1496.

    PubMed  CrossRef  Google Scholar 

  73. Phuah, S. Y., et al. (2012). Triple-negative breast cancer and PTEN (phosphatase and tensin homologue) loss are predictors of BRCA1 germline mutations in women with early-onset and familial breast cancer, but not in women with isolated late-onset breast cancer. Breast Cancer Research, 14(6), R142.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  74. Speiser, J., et al. (2012). Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. International Journal of Surgical Pathology, 20(2), 139–145.

    PubMed  CrossRef  Google Scholar 

  75. Lee, C. W., et al. (2008). A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Research, 10(6), R97.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  76. Clementz, A. G., et al. (2011). NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: Novel therapeutic implications. Breast Cancer Research, 13(3), R63.

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  77. Yamamoto, M., et al. (2013). NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nature Communications, 4, 2299.

    PubMed  CrossRef  Google Scholar 

  78. Bhola, N. E., et al. (2016). Treatment of triple negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and Notch-dependent cancer stem cell population. Cancer Research, 76(2), 440–452.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Chinchar, E., et al. (2014). Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells. Vascular Cell, 6, 12.

    PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clodia Osipo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bloodworth, J.C., Osipo, C. (2018). The Role of Notch in Breast Cancer. In: Miele, L., Artavanis-Tsakonas, S. (eds) Targeting Notch in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8859-4_9

Download citation