Skip to main content

Selection of Additional Topics

  • Chapter
  • First Online:
Semiparametric Regression with R

Part of the book series: Use R! ((USE R))

  • 4376 Accesses

Abstract

Chapters 25 deal with the most fundamental semiparametric regression topics and implementation in R. There are numerous other topics but, of course, not all of them can be covered in a single book. Instead we cover a selection of additional topics in this final chapter that we feel are worthy of some mention. These concern robust and quantile regression, functional data, kernel machines and classification, missing data, and measurement error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bande, M.F. and de la Fuente, M.O. (2016). fda.usc: Functional data analysis and utilities for statistical computing. R package version 1.3http://www.jstatsoft.org/v51/i04/.

  • Berry, S.M., Carroll, R.J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97, 160–169.

    Article  MathSciNet  Google Scholar 

  • Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York: Springer.

    MATH  Google Scholar 

  • Boddy, L., Wilkins, M.F. and Morris, C.W. (2001). Pattern recognition in flow cytometry. Cytometry, 44, 195–209.

    Article  Google Scholar 

  • Breiman, L. and Friedman, J.H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80, 580–598.

    Article  MathSciNet  Google Scholar 

  • Cardot, H. and Sarda, P. (2011). Functional linear regression. In The Oxford Handbook of Functional Data Analysis, editors Ferraty, F. and Romain, Y., Oxford: Oxford University Press, pp. 21–46.

    Google Scholar 

  • Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, Issue 1, 1–32.

    Google Scholar 

  • Carroll, R.J., Roeder, K. and Wasserman, L. (1999). Flexible parametric measurement error models, Biometrics, 55, 44–54.

    Article  Google Scholar 

  • Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). Measurement Error in Nonlinear Models, Second Edition. Boca Raton, Florida: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Chang, C.-C. and Lin, C.-J. (2011). LIBSVM : a library for support vector machines. Association for Computing Machinery Transactions on Intelligent Systems and Technology, 2, 27:1–27:27.

    Google Scholar 

  • Cole, T.J. and Green, P.J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Statistics in Medicine, 11, 1305–1319.

    Article  Google Scholar 

  • Crainiceanu, C., Ruppert, D. and Wand, M.P. (2005). Bayesian analysis for penalized spline regression using WinBUGS. Journal of Statistical Software, 14, Issue 14, 1–24.

    Google Scholar 

  • Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.: Cambridge University Press.

    Book  Google Scholar 

  • Daniels, M.J. and Hogan, J.W. (2008). Missing Data in Longitudinal Studies. Boca Raton, Florida: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Di Narzo, A.F. and Stigler, M. (2016). tsDyn: Nonlinear time series models with regime switching. R package version 0.9. http://github.com/MatthieuStigler/tsDyn/wiki.

  • Ferraty, F. and Romain, Y. (2011). The Oxford Handbook of Functional Data Analysis. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. New York: Springer.

    MATH  Google Scholar 

  • Fuller, W.A. (1987). Measurement Error Models. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Gelman, A., Sturtz, S., Ligges, U., Gorjanc, G. and Kerman, J. (2015). R2WinBUGS: Running WinBUGS and OpenBUGS from R/S-PLUS. R package version 2.1. http://www.r-project.org.

  • Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B. and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20, 830–851.

    Article  MathSciNet  Google Scholar 

  • Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M.W., Swihart, B., Xiao, L., Crainiceanu, C., Reiss, P., Chen, (2016). refund: Regression with functional data. R package version 0.1. http://www.r-project.org.

  • Guo, J., Gabry, J. and Goodrich, B. (2017). rstan: R interface to Stan. R package version 2.17.2.http://mc-stan.org.

  • Hastie, T. (2016). svmpath: The support vector machine path algorithm. R package version 0.955.http://www.jmlr.org/papers/volume5/hastie04a/hastie04a.pdf.

  • Hastie, T. and Efron, E. (2013). lars: Least angle regression, lasso and forward stagewise. R package version 1.2. http://www.r-project.org.

  • Hastie, T. and Tibshirani, R. (2000). Bayesian backfitting. Statistical Science, 15, 196–223.

    Article  MathSciNet  Google Scholar 

  • Hastie, T. and Zhu, J. (2006). Comment on article by J.M. Moguerza and A. Muñoz. Statistical Science, 21, 352–357.

    Article  MathSciNet  Google Scholar 

  • Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. New York: Springer.

    Book  Google Scholar 

  • Huang, A. and Wand, M.P. (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian Analysis, 8, 439–452.

    Article  MathSciNet  Google Scholar 

  • Huber, P.J. (1981). Robust Statistics. New York: Wiley.

    Book  Google Scholar 

  • Ivanescu, A., Staicu, A-M., Scheipl, F. and Greven, S. (2015). Penalized function-on-function regression. Computational Statistics, 30, 539–568.

    Article  MathSciNet  Google Scholar 

  • James, G. (2011). Sparseness and functional data analysis. In The Oxford Handbook of Functional Data Analysis, editors Ferraty, F. and Romain, Y., Oxford: Oxford University Press, pp. 298–326.

    Google Scholar 

  • Jones, M.C. and Faddy, M.J. (2003). A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, 159–174.

    Article  MathSciNet  Google Scholar 

  • Kayal, M., Vercelloni, J., Wand, M.P. and Adjeroud, M. (2015). Searching for the best bet in life-strategy: a quantitative approach to individual performance and population dynamics in reef-building corals. Ecological Complexity, 23, 73–84.

    Article  Google Scholar 

  • Koenker, R. (2005). Quantile Regression. New York: Cambridge University Press.

    Book  Google Scholar 

  • Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika, 81, 673–68.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. (2017). quantreg: Quantile regression. R package version 5.34. http://www.r-project.org.

  • Kooperberg, C. (2015). polspline: Polynomial spline routines. R package version 1.1. http://www.r-project.org.

  • Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989). Robust statistical modeling using the t-distribution. Journal of the American Statistical Association, 84, 881–896.

    MathSciNet  Google Scholar 

  • Lauritzen, S.L. (1996). Graphical Models. Oxford, U.K.: Clarendon Press.

    MATH  Google Scholar 

  • Lee, M.-J. (1995). Semi-parametric estimation of simultaneous equations with limited dependent variables: a case study of female labour supply. Journal of Applied Econometrics, 10, 187–200.

    Article  Google Scholar 

  • Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine learning benchmark problems. R package version 2.1. http://www.r-project.org.

  • Ligges, U., Sturtz, S., Gelman, A., Gorjanc, G. and Jackson, C. (2017). BRugs: Interface to the OpenBUGS Markov chain Monte Carlo software. R package version 0.9. http://www.r-project.org.

  • Little, R.J. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, Second Edition. Hoboken, New Jersey: John Wiley & Sons.

    Book  Google Scholar 

  • Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2013). The BUGS Book. Boca Raton, Florida: CRC Press.

    MATH  Google Scholar 

  • McLean, M., Hooker, G., Staicu, A.-M., Scheipl, F. and Ruppert, D. (2013). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–269.

    Article  MathSciNet  Google Scholar 

  • Marley, J.K. and Wand, M.P. (2010). Non-standard semiparametric regression via BRugs. Journal of Statistical Software, 37, Issue 5, 1–30.

    Article  Google Scholar 

  • Maronna, R.A., Martin, D.R. and Yohai, V.J. (2006). Robust Statistics: Theory and Methods. London: Wiley.

    Book  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., Lin, C.-C. (2017). e1071: Miscellaneous functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1.6. http://www.r-project.org.

  • Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A. and Bronskill, J. (2014). Infer.NET 2.6, Microsoft Research Cambridge.http://research.microsoft.com/infernet

  • Moguerza, J.M. and Muñoz, A. (2006). Support vector machines with applications (with discussion). Statistical Science, 21, 322–362.

    Article  MathSciNet  Google Scholar 

  • Müller, H.G., Wu, Y. and Yao, F. (2013). Continuously additive models for nonlinear functional regression. Biometrika, 100, 607–622.

    Article  MathSciNet  Google Scholar 

  • Müller, H.G. and Yao, F. (2008). Functional additive models. Journal of the American Statistical Association, 103, 1534–1544.

    Article  MathSciNet  Google Scholar 

  • Nason, G.P. (2008). Wavelet Methods in Statistics with R. New York: Springer.

    Book  Google Scholar 

  • Nason, G. (2016). wavethresh: Wavelets statistics and transforms. R package version 4.6.8. http://www.r-project.org.

  • Ormerod, J.T. and Wand, M.P. (2018). LowRankQP: Low-rank quadratic programming. R package version 1.0.3. http://www.r-project.org.

  • Ormerod, J.T., Wand, M.P. and Koch, I. (2008). Penalised spline support vector classifiers: computational issues. Computational Statistics, 23, 623–641.

    Article  MathSciNet  Google Scholar 

  • Pearce, N.D. and Wand, M.P. (2006). Penalized splines and reproducing kernel methods. The American Statistician, 60, 233–240.

    Article  MathSciNet  Google Scholar 

  • Pearce, N.D. and Wand, M.P. (2009). Explicit connections between longitudinal data analysis and kernel machines. Electronic Journal of Statistics, 3, 797–823.

    Article  MathSciNet  Google Scholar 

  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco: Morgan Kaufmann Publishers.

    MATH  Google Scholar 

  • Ramsay, J.O., Hooker, G. and Graves, S. (2009). Functional Data Analysis with R and MATLAB. New York: Springer.

    Book  Google Scholar 

  • Ramsay, J.O. and Silverman, B.W. (2006). Functional Data Analysis, Second Edition. New York: Springer.

    Google Scholar 

  • Ramsay, J.O., Wickham, H., Graves, S. and Hooker, G. (2017). fda: Functional data analysis. R package version 2.4.7. http://www.functionaldata.org.

  • Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian Processes for Machine Learning. Cambridge, Massachusetts: MIT Press.

    MATH  Google Scholar 

  • Richardson, S., Leblond, L., Jaussent, I. and Green, P.J. (2002). Mixture models in measurement error problems with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A, 165, 549–566.

    Article  MathSciNet  Google Scholar 

  • Rigby, R.A. and Stasinopoulos, D.M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society, Series C, 54, 507–554.

    Article  MathSciNet  Google Scholar 

  • Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. and Firth, D. (2015). MASS: Support functions and datasets Venables and Ripley’s ‘Modern Applied Statistics with S’. R package version 7.3.http://www.stats.ox.ac.uk/pub/MASS4/.

  • Roeder, K., Carroll, R.J. and Lindsay, B.G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. 91, 722–732.

    Google Scholar 

  • Salibian-Barrera, M., Cubranic, D. and Alimadad, A. (2014). rgam: Robust generalized additive model. R package version 0.6. http://www.stat.ubc.ca/~matias/rgam/.

  • Schölkopf, B. and Smola, A.J. (2002). Learning with Kernels. Cambridge, Massachusetts: MIT Press.

    MATH  Google Scholar 

  • Sigrist, M.W. (Editor) (1994). Air Monitoring by Spectroscopic Techniques. New York: Wiley.

    Google Scholar 

  • Svensson, L.E.O. (1994). Estimating and interpreting forward interest rates: Sweden 1992–1994. International Monetary Fund Working Paper WP/94/114. Washington D.C.: International Monetary Fund Publication Services.

    Google Scholar 

  • Therneau, T.M. and Lumley, T. (2015). survival: Survival analysis. R package version 2.38. http://www.r-project.org.

  • Verdinelli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems using the Gibbs sampler. Statistics and Computing, 1, 105–117.

    Article  Google Scholar 

  • Wand, M.P. (2009). Semiparametric regression and graphical models. Australian and New Zealand Journal of Statistics, 51, 9–41.

    Article  MathSciNet  Google Scholar 

  • Wand, M.P. and Ormerod, J.T. (2011). Penalized wavelets: embedding wavelets into semiparametric regression. Electronic Journal of Statistics, 5, 1654–1717.

    Article  MathSciNet  Google Scholar 

  • Wong, R.K.W., Yao, F. and Lee, T.C.M. (2013). robustgam: Robust estimation for generalized additive models. R package version 0.1.7. http://www.r-project.org.

  • Yee, T.W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 2295–2315.

    Article  Google Scholar 

  • Yee, T.W. (2017). VGAM: Vector generalized linear and additive models. R package version 1.0. http://www.stat.auckland.ac.nz/~yee/VGAM.

  • Yeo, I.-K. and Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954–959.

    Article  MathSciNet  Google Scholar 

  • Zhang, C., Shin, S.J., Wang, J., Wu, Y., Zhang, H.H. and Liu, Y. (2013). probsvm: Class probability estimation for support vector machines. R package version 1.00. http://www.r-project.org.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harezlak, J., Ruppert, D., Wand, M.P. (2018). Selection of Additional Topics. In: Semiparametric Regression with R. Use R!. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8853-2_6

Download citation

Publish with us

Policies and ethics