Selection of Additional Topics

  • Jaroslaw Harezlak
  • David Ruppert
  • Matt P. Wand
Part of the Use R! book series (USE R)


Chapters  2 5 deal with the most fundamental semiparametric regression topics and implementation in R. There are numerous other topics but, of course, not all of them can be covered in a single book. Instead we cover a selection of additional topics in this final chapter that we feel are worthy of some mention. These concern robust and quantile regression, functional data, kernel machines and classification, missing data, and measurement error.


  1. Bande, M.F. and de la Fuente, M.O. (2016). fda.usc: Functional data analysis and utilities for statistical computing. R package version 1.3
  2. Berry, S.M., Carroll, R.J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97, 160–169.MathSciNetCrossRefGoogle Scholar
  3. Bishop, C.M. (2006). Pattern Recognition and Machine Learning. New York: Springer.zbMATHGoogle Scholar
  4. Boddy, L., Wilkins, M.F. and Morris, C.W. (2001). Pattern recognition in flow cytometry. Cytometry, 44, 195–209.CrossRefGoogle Scholar
  5. Breiman, L. and Friedman, J.H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80, 580–598.MathSciNetCrossRefGoogle Scholar
  6. Cardot, H. and Sarda, P. (2011). Functional linear regression. In The Oxford Handbook of Functional Data Analysis, editors Ferraty, F. and Romain, Y., Oxford: Oxford University Press, pp. 21–46.Google Scholar
  7. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, Issue 1, 1–32.Google Scholar
  8. Carroll, R.J., Roeder, K. and Wasserman, L. (1999). Flexible parametric measurement error models, Biometrics, 55, 44–54.CrossRefGoogle Scholar
  9. Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). Measurement Error in Nonlinear Models, Second Edition. Boca Raton, Florida: Chapman & Hall/CRC.CrossRefGoogle Scholar
  10. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM : a library for support vector machines. Association for Computing Machinery Transactions on Intelligent Systems and Technology, 2, 27:1–27:27.Google Scholar
  11. Cole, T.J. and Green, P.J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Statistics in Medicine, 11, 1305–1319.CrossRefGoogle Scholar
  12. Crainiceanu, C., Ruppert, D. and Wand, M.P. (2005). Bayesian analysis for penalized spline regression using WinBUGS. Journal of Statistical Software, 14, Issue 14, 1–24.Google Scholar
  13. Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  14. Daniels, M.J. and Hogan, J.W. (2008). Missing Data in Longitudinal Studies. Boca Raton, Florida: Chapman & Hall/CRC.zbMATHGoogle Scholar
  15. Di Narzo, A.F. and Stigler, M. (2016). tsDyn: Nonlinear time series models with regime switching. R package version 0.9.
  16. Ferraty, F. and Romain, Y. (2011). The Oxford Handbook of Functional Data Analysis. Oxford: Oxford University Press.zbMATHGoogle Scholar
  17. Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. New York: Springer.zbMATHGoogle Scholar
  18. Fuller, W.A. (1987). Measurement Error Models. New York: John Wiley & Sons.CrossRefGoogle Scholar
  19. Gelman, A., Sturtz, S., Ligges, U., Gorjanc, G. and Kerman, J. (2015). R2WinBUGS: Running WinBUGS and OpenBUGS from R/S-PLUS. R package version 2.1.
  20. Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B. and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20, 830–851.MathSciNetCrossRefGoogle Scholar
  21. Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M.W., Swihart, B., Xiao, L., Crainiceanu, C., Reiss, P., Chen, (2016). refund: Regression with functional data. R package version 0.1.
  22. Guo, J., Gabry, J. and Goodrich, B. (2017). rstan: R interface to Stan. R package version 2.17.2.
  23. Hastie, T. (2016). svmpath: The support vector machine path algorithm. R package version 0.955.
  24. Hastie, T. and Efron, E. (2013). lars: Least angle regression, lasso and forward stagewise. R package version 1.2.
  25. Hastie, T. and Tibshirani, R. (2000). Bayesian backfitting. Statistical Science, 15, 196–223.MathSciNetCrossRefGoogle Scholar
  26. Hastie, T. and Zhu, J. (2006). Comment on article by J.M. Moguerza and A. Muñoz. Statistical Science, 21, 352–357.MathSciNetCrossRefGoogle Scholar
  27. Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. New York: Springer.CrossRefGoogle Scholar
  28. Huang, A. and Wand, M.P. (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian Analysis, 8, 439–452.MathSciNetCrossRefGoogle Scholar
  29. Huber, P.J. (1981). Robust Statistics. New York: Wiley.CrossRefGoogle Scholar
  30. Ivanescu, A., Staicu, A-M., Scheipl, F. and Greven, S. (2015). Penalized function-on-function regression. Computational Statistics, 30, 539–568.MathSciNetCrossRefGoogle Scholar
  31. James, G. (2011). Sparseness and functional data analysis. In The Oxford Handbook of Functional Data Analysis, editors Ferraty, F. and Romain, Y., Oxford: Oxford University Press, pp. 298–326.Google Scholar
  32. Jones, M.C. and Faddy, M.J. (2003). A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, 159–174.MathSciNetCrossRefGoogle Scholar
  33. Kayal, M., Vercelloni, J., Wand, M.P. and Adjeroud, M. (2015). Searching for the best bet in life-strategy: a quantitative approach to individual performance and population dynamics in reef-building corals. Ecological Complexity, 23, 73–84.CrossRefGoogle Scholar
  34. Koenker, R. (2005). Quantile Regression. New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika, 81, 673–68.MathSciNetCrossRefGoogle Scholar
  36. Koenker, R. (2017). quantreg: Quantile regression. R package version 5.34.
  37. Kooperberg, C. (2015). polspline: Polynomial spline routines. R package version 1.1.
  38. Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989). Robust statistical modeling using the t-distribution. Journal of the American Statistical Association, 84, 881–896.MathSciNetGoogle Scholar
  39. Lauritzen, S.L. (1996). Graphical Models. Oxford, U.K.: Clarendon Press.zbMATHGoogle Scholar
  40. Lee, M.-J. (1995). Semi-parametric estimation of simultaneous equations with limited dependent variables: a case study of female labour supply. Journal of Applied Econometrics, 10, 187–200.CrossRefGoogle Scholar
  41. Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine learning benchmark problems. R package version 2.1.
  42. Ligges, U., Sturtz, S., Gelman, A., Gorjanc, G. and Jackson, C. (2017). BRugs: Interface to the OpenBUGS Markov chain Monte Carlo software. R package version 0.9.
  43. Little, R.J. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, Second Edition. Hoboken, New Jersey: John Wiley & Sons.CrossRefGoogle Scholar
  44. Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2013). The BUGS Book. Boca Raton, Florida: CRC Press.zbMATHGoogle Scholar
  45. McLean, M., Hooker, G., Staicu, A.-M., Scheipl, F. and Ruppert, D. (2013). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–269.MathSciNetCrossRefGoogle Scholar
  46. Marley, J.K. and Wand, M.P. (2010). Non-standard semiparametric regression via BRugs. Journal of Statistical Software, 37, Issue 5, 1–30.CrossRefGoogle Scholar
  47. Maronna, R.A., Martin, D.R. and Yohai, V.J. (2006). Robust Statistics: Theory and Methods. London: Wiley.CrossRefGoogle Scholar
  48. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., Lin, C.-C. (2017). e1071: Miscellaneous functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1.6.
  49. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A. and Bronskill, J. (2014). Infer.NET 2.6, Microsoft Research Cambridge.
  50. Moguerza, J.M. and Muñoz, A. (2006). Support vector machines with applications (with discussion). Statistical Science, 21, 322–362.MathSciNetCrossRefGoogle Scholar
  51. Müller, H.G., Wu, Y. and Yao, F. (2013). Continuously additive models for nonlinear functional regression. Biometrika, 100, 607–622.MathSciNetCrossRefGoogle Scholar
  52. Müller, H.G. and Yao, F. (2008). Functional additive models. Journal of the American Statistical Association, 103, 1534–1544.MathSciNetCrossRefGoogle Scholar
  53. Nason, G.P. (2008). Wavelet Methods in Statistics with R. New York: Springer.CrossRefGoogle Scholar
  54. Nason, G. (2016). wavethresh: Wavelets statistics and transforms. R package version 4.6.8.
  55. Ormerod, J.T. and Wand, M.P. (2018). LowRankQP: Low-rank quadratic programming. R package version 1.0.3.
  56. Ormerod, J.T., Wand, M.P. and Koch, I. (2008). Penalised spline support vector classifiers: computational issues. Computational Statistics, 23, 623–641.MathSciNetCrossRefGoogle Scholar
  57. Pearce, N.D. and Wand, M.P. (2006). Penalized splines and reproducing kernel methods. The American Statistician, 60, 233–240.MathSciNetCrossRefGoogle Scholar
  58. Pearce, N.D. and Wand, M.P. (2009). Explicit connections between longitudinal data analysis and kernel machines. Electronic Journal of Statistics, 3, 797–823.MathSciNetCrossRefGoogle Scholar
  59. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco: Morgan Kaufmann Publishers.zbMATHGoogle Scholar
  60. Ramsay, J.O., Hooker, G. and Graves, S. (2009). Functional Data Analysis with R and MATLAB. New York: Springer.CrossRefGoogle Scholar
  61. Ramsay, J.O. and Silverman, B.W. (2006). Functional Data Analysis, Second Edition. New York: Springer.Google Scholar
  62. Ramsay, J.O., Wickham, H., Graves, S. and Hooker, G. (2017). fda: Functional data analysis. R package version 2.4.7.
  63. Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian Processes for Machine Learning. Cambridge, Massachusetts: MIT Press.zbMATHGoogle Scholar
  64. Richardson, S., Leblond, L., Jaussent, I. and Green, P.J. (2002). Mixture models in measurement error problems with reference to epidemiological studies. Journal of the Royal Statistical Society, Series A, 165, 549–566.MathSciNetCrossRefGoogle Scholar
  65. Rigby, R.A. and Stasinopoulos, D.M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society, Series C, 54, 507–554.MathSciNetCrossRefGoogle Scholar
  66. Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. and Firth, D. (2015). MASS: Support functions and datasets Venables and Ripley’s ‘Modern Applied Statistics with S’. R package version 7.3.
  67. Roeder, K., Carroll, R.J. and Lindsay, B.G. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. 91, 722–732.Google Scholar
  68. Salibian-Barrera, M., Cubranic, D. and Alimadad, A. (2014). rgam: Robust generalized additive model. R package version 0.6.
  69. Schölkopf, B. and Smola, A.J. (2002). Learning with Kernels. Cambridge, Massachusetts: MIT Press.zbMATHGoogle Scholar
  70. Sigrist, M.W. (Editor) (1994). Air Monitoring by Spectroscopic Techniques. New York: Wiley.Google Scholar
  71. Svensson, L.E.O. (1994). Estimating and interpreting forward interest rates: Sweden 1992–1994. International Monetary Fund Working Paper WP/94/114. Washington D.C.: International Monetary Fund Publication Services.Google Scholar
  72. Therneau, T.M. and Lumley, T. (2015). survival: Survival analysis. R package version 2.38.
  73. Verdinelli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems using the Gibbs sampler. Statistics and Computing, 1, 105–117.CrossRefGoogle Scholar
  74. Wand, M.P. (2009). Semiparametric regression and graphical models. Australian and New Zealand Journal of Statistics, 51, 9–41.MathSciNetCrossRefGoogle Scholar
  75. Wand, M.P. and Ormerod, J.T. (2011). Penalized wavelets: embedding wavelets into semiparametric regression. Electronic Journal of Statistics, 5, 1654–1717.MathSciNetCrossRefGoogle Scholar
  76. Wong, R.K.W., Yao, F. and Lee, T.C.M. (2013). robustgam: Robust estimation for generalized additive models. R package version 0.1.7.
  77. Yee, T.W. (2004). Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 2295–2315.CrossRefGoogle Scholar
  78. Yee, T.W. (2017). VGAM: Vector generalized linear and additive models. R package version 1.0.
  79. Yeo, I.-K. and Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954–959.MathSciNetCrossRefGoogle Scholar
  80. Zhang, C., Shin, S.J., Wang, J., Wu, Y., Zhang, H.H. and Liu, Y. (2013). probsvm: Class probability estimation for support vector machines. R package version 1.00.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jaroslaw Harezlak
    • 1
  • David Ruppert
    • 2
  • Matt P. Wand
    • 3
  1. 1.School of Public HealthIndiana University BloomingtonBloomingtonUSA
  2. 2.Department of Statistical ScienceCornell UniversityIthacaUSA
  3. 3.School of Mathematical and Physical SciencesUniversity of Technology SydneyUltimoAustralia

Personalised recommendations