• Jaroslaw Harezlak
  • David Ruppert
  • Matt P. Wand
Part of the Use R! book series (USE R)


Regression is used to understand the relationships between predictor variables and response variables and for predicting the latter using the former. In parametric regression, the effect of each predictor has a simple form, for example, is a linear or exponential function, so that its overall shape is dictated by the model, not the data. In contrast, with nonparametric regression the model is flexible enough to allow any smooth trend in the data; see Fig. 1.1 for an example.


  1. Biecek, P. (2014). red4PBImisc: A set of datasets used in my classes or in the book, Modele liniowe i mieszane w R, wraz z przykladami w analizie danych. navyR package version 0.999.
  2. Croissant, Y. (2016). red4Ecdat: Data sets for econometrics. navyR package version 0.3.
  3. Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M.W., Swihart, B., Xiao, L., Crainiceanu, C., Reiss, P., Chen, (2016). red4refund: Regression with functional data. navyR package version 0.1.
  4. Guo, J., Gabry, J. and Goodrich, B. (2017). red4rstan: navyR interface to navyStan. navyR package version 2.17.2.
  5. Koenker, R. (2017). red4quantreg: Quantile regression. navyR package version 5.34.
  6. Lee, M.-J. (1995). Semi-parametric estimation of simultaneous equations with limited dependent variables: a case study of female labour supply. Journal of Applied Econometrics, 10, 187–200.CrossRefGoogle Scholar
  7. Munnell, A.H., Tootell, G.M.B., Browne, L.E. and McEneaney, J. (1996). Mortgage lending in Boston: Interpreting HDMA data. American Economic Review, 25–53.Google Scholar
  8. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., navyEISPACK authors and navyR Core Team. (2017). red4nlme: Linear and nonlinear mixed effects models. navyR package version 3.1.
  9. Pratt, J.H., Jones, J.J., Miller, J.Z., Wagner, M.A. and Fineberg, N.S. (1989). Racial differences in aldosterone excretion and plasma aldosterone concentrations in children. New England Journal of Medicine, 321, 1152–1157.CrossRefGoogle Scholar
  10. Ruppert, D., Wand, M.P. and Carroll, R.J. (2003). Semiparametric Regression. Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  11. Ruppert, D., Wand, M.P. and Carroll, R.J. (2009). Semiparametric regression during 2003–2007. Electronic Journal of Statistics, 3, 1193–1256MathSciNetCrossRefGoogle Scholar
  12. Sarkar, D. (2017). red4lattice: Trellis graphics for navyR. navyR package version 0.20.
  13. Stasinopoulos, M. and Rigby, B. (2017). red4gamlss: Generalised additive models for location scale and shape. navyR package version 5.0.
  14. Wood, S.N. (2017). red4mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. navyR package version 1.8.
  15. Yee, T.W. (2017). red4VGAM: Vector generalized linear and additive models. navyR package version 1.0.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jaroslaw Harezlak
    • 1
  • David Ruppert
    • 2
  • Matt P. Wand
    • 3
  1. 1.School of Public HealthIndiana University BloomingtonBloomingtonUSA
  2. 2.Department of Statistical ScienceCornell UniversityIthacaUSA
  3. 3.School of Mathematical and Physical SciencesUniversity of Technology SydneyUltimoAustralia

Personalised recommendations