Description of Species-Environment Relationships



This chapter shows how direct and indirect gradient analysis can be handled in the ade4 package, with a special emphasis on three direct ordination methods: Coinertia Analysis, Redundancy Analysis and Canonical Correspondence Analysis.


  1. ter Braak C (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  2. ter Braak CJF (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:69–77CrossRefGoogle Scholar
  3. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  4. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–294CrossRefGoogle Scholar
  5. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  6. Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089CrossRefGoogle Scholar
  7. Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29:750–760MathSciNetCrossRefGoogle Scholar
  8. Gimaret-Carpentier C, Dray S, Pascal JP (2003) Broad-scale biodiversity pattern of the endemic tree flora of the Western Ghats (India) using canonical correlation analysis of herbarium records. Ecography 26:429–444CrossRefGoogle Scholar
  9. Green RH (1971) A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of Central Canada. Ecology 52:543–556CrossRefGoogle Scholar
  10. Green RH (1974) Multivariate niche analysis with temporally varying environmental factors. Ecology 55:73–83CrossRefGoogle Scholar
  11. Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377CrossRefGoogle Scholar
  12. Lebreton JD, Chessel D, Prodon R, Yoccoz NG (1988a) L’analyse des relations espèces-milieu par l’analyse canonique des correspondances. I. Variables de milieu quantitatives. Acta Oecol Oecol Generalis 9(1):53–67Google Scholar
  13. Lebreton JD, Chessel D, Richardot-Coulet M, Yoccoz NG (1988b) L’analyse des relations espèces-milieu par l’analyse canonique des correspondances. II. Variables de milieu qualitatives. Acta Oecol Oecol Generalis 9(2):137–151Google Scholar
  14. Miller JK (1975) The sampling distribution and a test for the significance of the bimultivariate redundancy statistic: a Monte Carlo study. Multivar Behav Res 10(2):233–244CrossRefGoogle Scholar
  15. Miller JK, Farr SD (1971) Bimultivariate redundancy: a comprehensive measure of interbattery relationship. Multivar Behav Res 6(3):313–324CrossRefGoogle Scholar
  16. Obadia J (1978) L’analyse en composantes explicatives. Revue de Statistique Appliquée 26(4): 5–28MathSciNetGoogle Scholar
  17. Pélissier R, Couteron P, Dray S, Sabatier D (2003a) Consistency between ordination techniques and diversity measurements: two alternative strategies for species occurrence data. Ecology 84:242–251CrossRefGoogle Scholar
  18. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625CrossRefGoogle Scholar
  19. Rao CR (1964) The use and interpretation of Principal Component Analysis in applied research. Sankhya: Indian J Stat Ser A 26:329–358MathSciNetzbMATHGoogle Scholar
  20. van den Wollenberg AL (1977) Redundancy analysis, an alternative for canonical analysis. Psychometrika 42(2):207–219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie EvolutiveCNRS UMR 5558 – Université de LyonVilleurbanneFrance
  2. 2.Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO)Muséum national déHistoire naturelle, CNRS, Sorbonne UniversitéParisFrance

Personalised recommendations