Static Markov Bridges and Enlargement of Filtrations

  • Umut Çetin
  • Albina Danilova
Part of the Probability Theory and Stochastic Modelling book series (PTSM, volume 90)


In the applications considered in the second part of this book, the rational agents in equilibrium trade so as to drive the demand for the traded to a certain level at a future date.


  1. 16.
    Baudoin, F.: Conditioned stochastic differential equations: theory, examples and application to finance. Stochastic Process. Appl. 100, 109–145 (2002). URL MathSciNetCrossRefGoogle Scholar
  2. 18.
    Baudoin, F.: Modeling anticipations on financial markets. In: Paris-Princeton Lectures on Mathematical Finance, 2002, Lecture Notes in Math., vol. 1814, pp. 43–94. Springer, Berlin (2003)Google Scholar
  3. 19.
    Bertoin, J., Pitman, J.: Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118(2), 147–166 (1994)MathSciNetzbMATHGoogle Scholar
  4. 25.
    Billingsley, P.: Probability and measure, third edn. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York (1995)zbMATHGoogle Scholar
  5. 35.
    Çetin, U., Danilova, A.: Markov bridges: SDE representation. Stochastic Processes and their Applications 126(3), 651–679 (2016)MathSciNetCrossRefGoogle Scholar
  6. 38.
    Chaumont, L., Uribe Bravo, G.: Markovian bridges: weak continuity and pathwise constructions. Ann. Probab. 39(2), 609–647 (2011)MathSciNetCrossRefGoogle Scholar
  7. 50.
    Ethier, S.N., Kurtz, T.G.: Markov processes: Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York (1986)Google Scholar
  8. 51.
    Fitzsimmons, P., Pitman, J., Yor, M.: Markovian bridges: construction, Palm interpretation, and splicing. In: Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab., vol. 33, pp. 101–134. Birkhäuser Boston, Boston, MA (1993)CrossRefGoogle Scholar
  9. 52.
    Föllmer, H.: Time reversal on Wiener space. In: Stochastic processes—mathematics and physics (Bielefeld, 1984), Lecture Notes in Math., vol. 1158, pp. 119–129. Springer, Berlin (1986). doi: URL Scholar
  10. 57.
    Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964)zbMATHGoogle Scholar
  11. 64.
    Haussmann, U.G., Pardoux, É.: Time reversal of diffusions. Ann. Probab. 14(4), 1188–1205 (1986)MathSciNetCrossRefGoogle Scholar
  12. 68.
    Hsu, P.: Brownian bridges on Riemannian manifolds. Probab. Theory Related Fields 84(1), 103–118 (1990)MathSciNetCrossRefGoogle Scholar
  13. 90.
    Mansuy, R., Yor, M.: Random times and enlargements of filtrations in a Brownian setting, Lecture Notes in Mathematics, vol. 1873. Springer-Verlag, Berlin (2006)zbMATHGoogle Scholar
  14. 91.
    Marcus, M.B., Rosen, J.: Markov processes, Gaussian processes, and local times, vol. 100. Cambridge University Press (2006)Google Scholar
  15. 92.
    McKean Jr., H.P.: Elementary solutions for certain parabolic partial differential equations. Trans. Amer. Math. Soc. 82, 519–548 (1956)MathSciNetCrossRefGoogle Scholar
  16. 93.
    Millet, A., Nualart, D., Sanz, M.: Integration by parts and time reversal for diffusion processes. Ann. Probab. 17(1), 208–238 (1989)MathSciNetCrossRefGoogle Scholar
  17. 95.
    Pardoux, É.: Grossissement d’une filtration et retournement du temps d’une diffusion. In: Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math., vol. 1204, pp. 48–55. Springer, Berlin (1986). doi: URL Scholar
  18. 97.
    Pitman, J., Yor, M.: Bessel processes and infinitely divisible laws. In: Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), Lecture Notes in Math., vol. 851, pp. 285–370. Springer, Berlin (1981)Google Scholar
  19. 98.
    Pitman, J., Yor, M.: A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59(4), 425–457 (1982)MathSciNetCrossRefGoogle Scholar
  20. 100.
    Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, third edn. Springer-Verlag, Berlin (1999)Google Scholar
  21. 103.
    Roynette, B., Vallois, P., Yor, M.: Some penalisations of the Wiener measure. Jpn. J. Math. 1(1), 263–290 (2006). doi: 10.1007/s11537-006-0507-0. URL MathSciNetCrossRefGoogle Scholar
  22. 104.
    Roynette, B., Yor, M.: Penalising Brownian paths, Lecture Notes in Mathematics, vol. 1969. Springer-Verlag, Berlin (2009). doi: 10.1007/978-3-540-89699-9. URL CrossRefGoogle Scholar
  23. 105.
    Salminen, P.: Brownian excursions revisited. In: Seminar on stochastic processes, 1983 (Gainesville, Fla., 1983), Progr. Probab. Statist., vol. 7, pp. 161–187. Birkhäuser Boston, Boston, MA (1984)CrossRefGoogle Scholar
  24. 107.
    Shorack, G.R., Wellner, J.A.: Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York (1986)Google Scholar
  25. 109.
    Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Classics in Mathematics. Springer-Verlag, Berlin (2006). Reprint of the 1997 editionGoogle Scholar
  26. 113.
    Yor, M.: Some aspects of Brownian motion. Part II. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1997). URL Some recent martingale problemsCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Umut Çetin
    • 1
  • Albina Danilova
    • 2
  1. 1.Department of StatisticsLondon School of EconomicsLondonUK
  2. 2.Department of MathematicsLondon School of EconomicsLondonUK

Personalised recommendations