Skip to main content

Evolutionary and Ecological Functions of Dynamic Perceptions of Looming Danger

  • Chapter
  • First Online:
  • 580 Accesses

Abstract

A useful analogy may help to understand the evolutionary selection pressures that have shaped how humans detect and respond to threats. A rare genetic anomaly on the V chromosome has been found that results in a “movement blindness” in the form of an inability to perceive visual movement (Zeki, 1991; Zihl & von Cramon, 1983). If an individual were to have this genetic defect, the person would only be able to perceive object movement that occurs in the surrounding environment as series of snapshots of static objects rather than as a fluid sequence of dynamic objects that are approaching. Consider how could this inability to perceive the dynamism of visual objects could affect their chances of surviving an encounter with a predator or a car that was careening toward them while they were crossing the street? Similarly, imagine that there were two hypothetical human ancestors, one of whom had our ability to rapidly detect and respond to dynamism and movement of potential predators and one who didn’t. Which one of these potential ancestors are we more likely to be descended from?

“The capacity for anxiety, like other normal defenses, has been shaped by natural selection.”

Isaac M. Marks and Randolph M. Nesse, 1994

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson, L. Y., Seligman, M. E. P., & Teasdale, J. D. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87, 49–74.

    Article  Google Scholar 

  • Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Science, 33, 245–313.

    Article  Google Scholar 

  • Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology, 74, 28–33.

    Article  Google Scholar 

  • Bach, D. R., Schachinger, H., Neuhoff, J. G., Esposito, F., Di Salle, F., Lehmann, C., & Seifritz, E. (2008). Rising sound intensity: An intrinsic warning cue activating the amygdala. Cerebral Cortex, 18, 145–150.

    Article  Google Scholar 

  • Ball, W., & Tronick, E. (1971). Infant response to impending collision: Optical and real. Science, 171, 818–820.

    Article  Google Scholar 

  • Barrett, H. C. (2005). Adaptations to predators and prey. In D. M. Buss (Ed.), The handbook of evolutionary psychology (pp. 200–223). New York, NY: Wiley.

    Google Scholar 

  • Blumstein, D. T. (2003). Flight initiation distance in birds is dependent on intruder starting distance. Journal of Wildlife Management, 67, 852–857. https://doi.org/10.2307/3802692

    Article  Google Scholar 

  • Blumstein, D. T. (2006). Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Animal Behaviour, 71, 389–399. https://doi.org/10.1016/j.anbehav.2005.05.010

    Article  Google Scholar 

  • Blumstein, D. T., Anthony, L. L., Harcourt, R., & Ross, G. (2003). Testing a key assumption of wildlife buffer zones: Is flight initiation distance a species-specific trait? Biological Conservation, 110, 97–100. https://doi.org/10.1016/S0006-3207(02)00180-5

    Article  Google Scholar 

  • Borkovec, T. D., Ray, W. J., & Stoeber, J. (1998). Worry: A cognitive phenomenon intimately linked to affective, physiological, and interpersonal behavioral processes. Cognitive Therapy & Research, 22, 561–576.

    Article  Google Scholar 

  • Bracha, H. S. (2004). Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum. CNS Spectrums, 9, 679–685.

    Article  Google Scholar 

  • Buss, D. M. (1991). Evolutionary personality psychology. Annual Review of Psychology, 42, 459–491.

    Article  Google Scholar 

  • Camhi, J. M., & Tom, W. (1978). The escape behavior of the cockroach Periplaneta americana. Journal of Comparative Physiology, 128, 193–201.

    Article  Google Scholar 

  • Card, G., & Dickenson, M. H. (2008). Visually mediated motor planning in the escape response of drosophila. Current Biology, 18, 1300–1307.

    Article  Google Scholar 

  • Carlile, P. A., Peters, R. A., & Evans, C. S. (2006). Detection of a looming stimulus by the Jacky dragon (Amphibolurus muricatus): Selective sensitivity to characteristics of an aerial predator. Animal Behaviour, 72, 553–562.

    Article  Google Scholar 

  • Casas, F., Body, J. M., & Lazzari, C. R. (2011). Danger detection and escape behaviour in wood crickets. Journal of Insect Physiology, 57, 865–871.

    Article  Google Scholar 

  • Chance, M. R. A. (1962). An interpretation of some agonistic postures: The role of “cut-off” acts and postures. In Symposium no. 8 of the Zoological Society of London (pp. 71–89).

    Google Scholar 

  • Chapman, H. A., Kim, D. A., Susskind, J. M., & Anderson, A. K. (2009). In bad taste: Evidence for the oral origins of moral disgust. Science, 323, 1222. https://doi.org/10.1126/science.1165565

    Article  PubMed  Google Scholar 

  • Confer, J. C., Easton, J. A., Fleischman, D. S., Goetz, C. D., Lewis, D. M., Perilloux, C., & Buss, D. M. (2010). Evolutionary psychology: Controversies, questions, prospects, and limitations. American Psychologist, 65(2), 110–126.

    Article  Google Scholar 

  • Cooper Jr., W. E. (1997). Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): Predator speed, directness of approach, and female presence. Herpetologica, 53, 464–474.

    Google Scholar 

  • Cooper Jr., W. E., Martin, J., & Lopez, P. (2003). Simultaneous risks and differences among individual predators affect refuge use by a lizard, Lacerta monticola. Behaviour, 140, 27–41.

    Article  Google Scholar 

  • Darwin, C. (1872). The expression of the emotions in man and animals. London: J. Murray.

    Book  Google Scholar 

  • David, B., & Olatunji, B. O. (2011). The effect of disgust conditioning and disgust sensitivity on appraisals of moral transgressions. Personality and Individual Differences, 50, 1142–1146. https://doi.org/10.1016/j.paid.2011.02.004

    Article  Google Scholar 

  • Dixon, A. K. (1998). Ethological strategies for defense in animals and humans: Their role in some psychiatric disorders. British Journal of Medical Psychology, 71, 417–425.

    Article  Google Scholar 

  • Eilam, D. (2005). Die hard: A blend of freezing and fleeing as a dynamic defense—Implications for the control of defensive behavior. Neuroscience and Biobehavioral Reviews, 29, 1181–1191.

    Article  Google Scholar 

  • Evans, C. S., Macedonia, J. M., & Marler, P. (1993). Effect of apparent size and speed on the response of chickens, Gallus, to computer-generated simulations of aerial predators. Animal Behavior, 46, 1–11.

    Article  Google Scholar 

  • Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In M. D. Beecher (Ed.), Evolution and learning (pp. 185–211). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Fernández-Juricic, E., Blumstein, D. T., Abrica, G., Manriquez, L., Adams, L. B., Adams, R., et al. (2006). Effects of body mass, size, and morphology on anti-predator escape and postescape responses: A comparative study with birds. Evolutionary Ecology Research, 8, 731–752.

    Google Scholar 

  • Fernández-Juricic, E., Jimenez, M. D., & Lucas, E. (2001). Alert distance as an alternative measure of bird tolerance to human disturbance: Implications for park design. Environmental Conservation, 28, 263–269. https://doi.org/10.1017/S0376892901000273

    Article  Google Scholar 

  • Fernández-Juricic, E., Jimenez, M. D., & Lucas, E. (2002). Factors affecting intra- and inter-specific variations in the difference between alert distance and flight distances for birds in forested habitats. Canadian Journal of Zoology, 80, 1212–1220. https://doi.org/10.1139/z02-104

    Article  Google Scholar 

  • Fernández-Juricic, E., Vernier, M. P., Renison, D., & Blumstein, D. T. (2005). Sensitivity of wildlife to spatial patterns of recreationist behavior: A critical assessment of minimum approaching distances and buffer areas for grassland birds. Biological Conservation, 125, 225–235. https://doi.org/10.1016/j.biocon.2005.03.020

    Article  Google Scholar 

  • Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure as an auditory distance cue. British Journal of Developmental Psychology, 19, 1–10.

    Article  Google Scholar 

  • Gallup, G. G. (1974). Animal hypnosis: Factual status of a fictional concept. Psychological Bulletin, 81, 836–853.

    Article  Google Scholar 

  • Ghazanfar, A. A., & Maier, J. X. (2009). Rhesus monkeys (Macaca mulatta) hear rising frequency sounds as looming. Behavioral Neuroscience, 123, 822–827.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton-Mifflin.

    Google Scholar 

  • Gilbert, P. (1993). Defense and safety: Their function in social behaviour and psychopathology. British Journal of Clinical Psychology, 32, 131–153.

    Article  Google Scholar 

  • Gilbert, P. (1998). Evolutionary psychopathology: Why isn’t the mind designed better than it is? British Journal of Medical Psychology, 71, 353–373.

    Article  Google Scholar 

  • Gilbert, P. (2001). Evolutionary approaches to psychopathology: The role of natural defenses. Australian and New Zealand Journal of Psychiatry, 35, 17–27.

    Article  Google Scholar 

  • Gilbert, P., & Allan, S. (1998). The role of defeat and entrapment (arrested flight) in depression: An exploration of an evolutionary view. Psychological Medicine, 28, 585–598.

    Article  Google Scholar 

  • Gill, J. A., Sutherland, W. J., & Watkinson, A. R. (1996). A method to quantify the effects of human disturbance on animal populations. Journal of Applied Ecology, 33, 786–792. https://doi.org/10.2307/2404948

    Article  Google Scholar 

  • Glantz, R. M. (1974). Defense reflex and motion detector responsiveness to approaching targets: The motion detector trigger to the defense reflex pathway. Journal of Comparative Physiology, 95, 297–314.

    Article  Google Scholar 

  • Gray, J. R., Lee, J. K., & Robertson, R. M. (2001). Activity of descending contralateral movement detector neurons and collision avoidance behavior in response to head-on visual stimuli in locust. Journal of Comparative Physiology, 187, 115–129.

    Article  Google Scholar 

  • Gwilliam, G. F. (1963). The mechanism of the shadow reflex in Cirripedia. I. Electrical activity in the supraesophageal ganglion and ocellar nerve. Biological Bulletin, 125, 470–485.

    Article  Google Scholar 

  • Hall, E. T. (1963). A system for the notation of proxemic behavior. American Anthropologist, 65, 1003–1026. https://doi.org/10.1525/aa.1963.65.5.02a00020

    Article  Google Scholar 

  • Hall, E. T. (1966). The hidden dimension. New York, NY: Anchor Books ISBN 0-385-08476-5.

    Google Scholar 

  • Hassenstein, B., & Huster, R. (1999). Hiding responses of locusts to approaching objects. Journal of Experimental Biology, 202, 1701–1710.

    PubMed  Google Scholar 

  • Hediger, H. (1964). Wild animals in captivity (pp. 156–157). New York, NY: Dover Publications Translated by G. Sircom. First published in 1950.

    Google Scholar 

  • Helfman, G. S. (1989). Threat sensitive predator avoidance in damsel fish trumpet fish interactions. Behavioral Ecology and Sociobiology, 24, 47–58.

    Article  Google Scholar 

  • Hemmi, J. M. (2005a). Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behavior, 69, 603–614.

    Article  Google Scholar 

  • Hemmi, J. M. (2005b). Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behavior, 69, 615–625.

    Article  Google Scholar 

  • Hiroto, D. S., & Seligman, M. E. P. (1975). Generality of learned helplessness in man. Journal of Personality and Social Psychology, 31, 311–327. https://doi.org/10.1037/h0076270

    Article  Google Scholar 

  • Jabłonski, P. G., & Strausfeld, N. J. (2000). Exploitation by a recent avian predator of an ancient arthropod escape circuit: Prey sensitivity & elements of the displays by predators. Brain, Behaviour and Evolution, 56, 94–106.

    Article  Google Scholar 

  • Jennions, M. D., Backwell, P. R. Y., Murai, M., & Christy, J. H. (2003). Hiding behaviour in fiddler crabs: How long should prey hide in response to a potential predator? Animal Behavior, 66, 251–257.

    Article  Google Scholar 

  • Jones, R. B., Duncan, I. J., & Hughes, B. O. (1981). The assessment of fear in domestic hens exposed to a looming human stimulus. Behavioural Processes, 6(2), 121–133.

    Article  Google Scholar 

  • Jouen, F. (1990). Early visual-vestibular interactions and postural development. In H. Bloch & B. I. Bertenthal (Eds.), Sensorimotor organizations and development in infancy and early childhood (pp. 199–215). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Jouen, F., Lepecq, J.-C., Gapenne, O., & Bertenthal, B. I. (2000). Optic flow in neonates. Infant Behavior & Development, 23, 271–284.

    Article  Google Scholar 

  • Kang, H., & Nakagawa, H. (2006). Collision-sensitive neurons in the optic tectum of the bullfrog (Rana catesbeiana). International Congress Series, 1291, 145–148.

    Article  Google Scholar 

  • Kayed, N. S., & Van der Meer, A. (2007). Infants’ timing strategies to optical collisions: A longitudinal study. Infant Behavior & Development, 30, 50–59.

    Article  Google Scholar 

  • King, S. M., & Cowey, A. (1992). Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation. Neuropsychologia, 30, 1017–1024. https://doi.org/10.1016/0028-3932(92)90053-O

    Article  PubMed  Google Scholar 

  • King, S. M., Dykeman, C., Redgrave, P., & Dean, P. (1992). Use of a distracting task to obtain defensive head movements to looming visual stimuli by human adults in a laboratory setting. Neuropsychologia, 21, 245–259.

    Google Scholar 

  • Knight, R. L., & Knight, S. K. (1984). Responses of wintering bald eagles to boating activity. Journal of Wildlife Management, 48, 999–1004.

    Article  Google Scholar 

  • Kramer, D. L., & Bonenfant, M. (1997). Direction of predator approach and the decision to flee to a refuge. Animal Behaviour, 54(2), 289–295.

    Article  Google Scholar 

  • LaRosa, A. O., & Mir, J. R. (2013). On the relationships between disgust and morality: A critical review. Psicothema, 25, 222–226. https://doi.org/10.7334/psicothema2012.159

    Article  Google Scholar 

  • LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4/5), 727–738.

    Article  Google Scholar 

  • Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293–294. https://doi.org/10.1038/293293a0

    Article  Google Scholar 

  • Maier, J. X., & Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. The Journal of Neuroscience, 27, 4093–4100.

    Article  Google Scholar 

  • Maier, J. X., Neuhoff, J. G., Logothetis, N. K., & Ghazanfar, A. A. (2004). Multisensory integration of looming signals by rhesus monkeys. Neuron, 43, 177–181.

    Article  Google Scholar 

  • Marks, I. M., & Nesse, R. M. (1994). Fear and fitness: An evolutionary analysis of anxiety disorders. Ethology and Sociobiology, 15, 247–261. https://doi.org/10.1016/0162-3095(94)90002-7

    Article  Google Scholar 

  • Millot, S., Bégout, M. L., & Chatain, B. (2009). Exploration behaviour and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax L.). Applied Animal Behaviour Science, 119, 108–114.

    Article  Google Scholar 

  • Morrongiello, B. A., Hewitt, K. L., & Gotowiec, A. (1991). Infants’ discrimination of relative distance in the auditory modality: Approaching versus receding sound sources. Infant Behavior & Development, 14, 187–208. https://doi.org/10.1016/0163-6383(91)90005-D

    Article  Google Scholar 

  • Nesse, R. (2001). The smoke detector principle: Natural selection and the regulation of defenses. In A. R. Damasio, A. Harrington, J. Kagan, B. McEwen, H. Moss, & R. Shaikh (Eds.), Unity of knowledge: The convergence of natural and human science (Vol. 935, pp. 75–85). New York, NY: New York Academy of Sciences.

    Google Scholar 

  • Neuhoff, J. G. (1998). A perceptual bias for rising tones. Nature, 395, 123–124.

    Article  Google Scholar 

  • Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 12, 87–110.

    Article  Google Scholar 

  • Oliva, D., Medan, V., & Tomsic, D. (2007). Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus. Journal of Experimental Biology, 210, 865–880.

    Article  Google Scholar 

  • Ranter, S. C. (1977). Immobility in invertebrates: What can we learn? Psychological Review, 1, 1–14.

    Google Scholar 

  • Regan, D., & Hamstra, S. J. (1993). Dissociation of discrimination thresholds for time to contact and for rate of angular expansion. Vision Research, 33, 447–462.

    Article  Google Scholar 

  • Reingold, H., & Eckerman, C. O. (1973). Fear of the stranger: A critical examination. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 8). New York: Academic.

    Google Scholar 

  • Rodgers Jr., J. A., & Schwikert, S. T. (2002). Buffer-zone distances to protect foraging and loafing Waterbirds from disturbance by personal watercraft and outboard-powered boats. Conservation Biology, 16, 216–224.

    Article  Google Scholar 

  • Rodgers Jr., J. A., & Smith, H. T. (1995). Set-back distances to protect nesting bird colonies from human disturbance in Florida. Conservation Biology, 9, 89–99.

    Article  Google Scholar 

  • Rodgers Jr., J. A., & Smith, H. T. (1997). Buffer zone distances to protect foraging and loafing waterbirds from human disturbance in Florida. Wildlife Society Bulletin, 25, 139–145.

    Google Scholar 

  • Roemer, L., & Orsillo, S. M. (2010). Mindfulness and acceptance-based behavioral therapies in practice. New York: Guilford.

    Google Scholar 

  • Santer, R. D., Rind, F. C., Stafford, R., & Simmons, P. J. (2006). The role of an identified looming-sensitive neuron in triggering a flying locust’s escape. Journal of Neurophysiology, 95, 3391–3400.

    Article  Google Scholar 

  • Santer, R. D., Simmons, P. J., & Rind, F. C. (2005). Gliding behavior elicited by lateral looming stimuli in flying locust. Journal of Comparative Physiology A, 191, 61–73.

    Article  Google Scholar 

  • Scarano, M. F., & Tomsic, D. (2014). Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. Journal of Physiology, 108(2), 141–147.

    PubMed  Google Scholar 

  • Schaller, G. B., & Emlen Jr., J. T. (1962). The ontogeny of avoidance behaviour in some precocial birds. Animal Behaviour, 10(3–4), 370–381. https://doi.org/10.1016/0003-3472(62)90060-X

    Article  Google Scholar 

  • Schiff, W. (1965). Perception of impending collision: A study of visually directed avoidant behavior. Psychological Monographs: General and Applied, 79(11), 1–26. https://doi.org/10.1037/h0093887

    Article  Google Scholar 

  • Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science, 136, 982–983.

    Article  Google Scholar 

  • Schmuckler, M. A., Collimore, L. M., & Dannemiller, J. L. (2007). Infants’ reactions to object collision on hit and miss trajectories. Infancy, 12, 105–118.

    Article  Google Scholar 

  • Seligman, M. E. P. (1975). Helplessness: On depression, development, and death. San Francisco: W. H. Freeman ISBN 0-7167-2328-X.

    Google Scholar 

  • Sibrava, N. J., & Borkovec, T. D. (2006). The cognitive avoidance theory of worry. In G. Davey & A. Wells (Eds.), Worry and its psychological disorders: Theory, assessment and treatment (pp. 239–256). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Smith, D. G. (1997). Ecological factors influencing the antipredator behaviors of the ground skink, Scincella lateralis. Behavioral Ecology, 8, 622–629.

    Article  Google Scholar 

  • Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceeding of the Royal Society of London, Series B Biological Sciences, 272, 2627–2634.

    Article  Google Scholar 

  • Stankowich, T., & Coss, R. G. (2006). Effects of predator behavior and proximity on risk assessment by Columbian black-tailed deer. Behavioral Ecology, 17, 246–254.

    Article  Google Scholar 

  • Tammero, L. F., & Dickinson, M. H. (2002). Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. Journal of Experimental Biology, 205, 2785–2798.

    PubMed  Google Scholar 

  • Trause, M. A. (1977). Stranger responses: Effects of familiarity, strangers approach, and sex of infant. Child Development, 48, 1657–1661.

    Article  Google Scholar 

  • Wang, Y., & Frost, B. J. (1962). Time to collision is signaled by neurons in the nucleus rotundus of pigeons. Nature, 356, 236–238.

    Article  Google Scholar 

  • Wolf, I. D., & Croft, D. B. (2001). Minimizing disturbance to wildlife by tourists approaching on foot or in a car: A study of kangaroos in the Australian rangelands. Applied Animal Behaviour Science, 126, 75–84. https://doi.org/10.1016/j.applanim.2010.06.001

    Article  Google Scholar 

  • Wu, L. Q., Niu, Y. Q., Yang, J., & Wang, S. R. (2005). Tectal neurons signal impending collision of looming objects in the pigeon. The European Journal of Neuroscience, 22, 2325–2331.

    Article  Google Scholar 

  • Yamamoto, K., Nakata, M., & Nakagawa, H. (2003). Input and output characteristics of collision avoidance behavior in the frog Rana catesbeiana. Brain Behavior Evolution, 62, 201–211.

    Article  Google Scholar 

  • Ydenberg, R. C., & Dill, R. C. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229–249.

    Article  Google Scholar 

  • Yilmaz, M., & Markus, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 2011–2015. https://doi.org/10.1016/j.cub.2013.08.015

    Article  PubMed  Google Scholar 

  • Zeki, S. (1991). Cerebral akinetopsia (visual motion blindness). A review. Brain, 114, 811–824. https://doi.org/10.1093/brain/114.2.811

    Article  PubMed  Google Scholar 

  • Zihl, J., & von Cramon, N. M. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain, 106, 313–340. https://doi.org/10.1093/brain/106.2.313

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riskind, J.H., Rector, N.A. (2018). Evolutionary and Ecological Functions of Dynamic Perceptions of Looming Danger. In: Looming Vulnerability. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8782-5_2

Download citation

Publish with us

Policies and ethics