Acute Kidney Injury and Liver Disease: Incidence, Pathophysiology, Prevention/Treatment, and Outcomes

  • Justin M. Belcher
  • Chirag R. ParikhEmail author


Acute kidney injury (AKI) is common in patients with cirrhosis and is associated with significant morbidity and mortality. The pathophysiologic cascade triggered by the onset of portal hypertension results in chronic renal hypoperfusion and renders the kidneys unable to compensate in the face of secondary insults such as gastrointestinal bleeding and spontaneous bacterial peritonitis. The most common etiologies of AKI in this setting include prerenal azotemia, acute tubular necrosis (ATN), and hepatorenal syndrome (HRS). Recent consensus criteria have attempted to modernize the definition of AKI in cirrhosis by adopting a threshold of a rise in creatinine of 0.3 mg/dL or 50% from baseline and by eliminating a creatinine cutoff for the diagnosis of hepatorenal syndrome. Despite these standardized criteria, distinguishing between AKI etiologies remains difficult in patients with cirrhosis. Many of the traditional means of differential diagnosis, including measuring the fractional excretion of sodium and examining urine sediment, perform suboptimally in cirrhosis. Recent studies have identified multiple urinary biomarkers associated with structural kidney injury that have shown promise for the ability to distinguish ATN from HRS. Accurately making this distinction is critical as treatment with vasoconstrictors combined with albumin significantly improves renal function and reduced mortality in patients with HRS. The most widely studied vasoconstrictor, terlipressin, has been shown to reverse HRS which is approximately 50% of cases. Although terlipressin is unavailable in the United States, small studies suggest that norepinephrine (but not the combination of midodrine and octreotide) may be similarly efficacious.


Acute kidney injury Cirrhosis Hepatorenal syndrome Biomarkers Terlipressin Diagnostic criteria 


  1. 1.
    Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Du Cheyron D, Bouchet B, Parienti JJ, et al. The attributable mortality of acute renal failure in critically ill patients with liver cirrhosis. Intensive Care Med. 2005;31(12):1693–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Fang JT, Tsai MH, Tian YC, et al. Outcome predictors and new score of critically ill cirrhotic patients with acute renal failure. Nephrol Dial Transplant. 2008;23(6):1961–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Cholongitas E, Senzolo M, Patch D, et al. Cirrhotics admitted to intensive care unit: the impact of acute renal failure on mortality. Eur J Gastroenterol Hepatol. 2009;21(7):744–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Hsu CY, McCulloch CE, Fan D, et al. Community-based incidence of acute renal failure. Kidney Int. 2007;72(2):208–12.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wiest R, Das S, Cadelina G, et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest. 1999;104:1223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005;41:422–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Martin PY, Ohara M, Gines P, et al. Nitric oxide synthase (NOS) inhibition for one week improves renal sodium and water excretion in cirrhotic rats with ascites. J Clin Invest. 1998;101:235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee FY, Colombato LA, Albillos A, et al. N omega-nitro-L-arginine administration corrects peripheral vasodilation and systemic capillary hypotension, and ameliorates plasma volume expansion and sodium retention in portal hypertensive rats. Hepatology. 1993;17:84–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Albillos A, de la Hera A, González M, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology. 2003;37:208–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Francés R, Zapater P, González Navajas JM, et al. Bacterial DNA in patients with cirrhosis and noninfected ascites mimics the soluble immune response established in patients with spontaneous bacterial peritonitis. Hepatology. 2008;47:978–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Mejias M, Garcia-Pras E, Tiani C, et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009;49:1245–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Schrier RW, Arroyo V, Bernardi M, et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Arroyo V, Ginès P, Gerbes AL, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Hepatology. 1996;23:164–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Guevara M, Bru C, Ginès P, et al. Increased cerebrovascular resistance in cirrhotic patients with ascites. Hepatology. 1998;28:39–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Laffi G, La Villa G, Pinzani M, et al. Arachidonic acid derivatives and renal function in liver cirrhosis. Semin Nephrol. 1997;17:530–48.PubMedGoogle Scholar
  17. 17.
    Ruiz-del-Arbol L, Monescillo A, Arocena C, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology. 2005;42:439–47.CrossRefPubMedGoogle Scholar
  18. 18.
    Krag A, Bendtsen F, Henriksen JH, et al. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59:105–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Nazar A, Guevara M, Sitges M, et al. Left ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58:51–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Belcher JM, Parikh CR, Garcia-Tsao G. Acute kidney injury in patients with cirrhosis: perils and promise. Clin Gastroenterol Hepatol. 2013;11(12):1550–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Ren Physiol. 2007;292:F1105–23.CrossRefGoogle Scholar
  22. 22.
    Sansoé E, Silvano S, Mengozzi G, et al. Loss of tubuloglomerular feedback in decompensated liver cirrhosis: physiopathological implications. Dig Dis Sci. 2005;50:955–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Stadlbauer VP, Wright GAK, Banaji M, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology. 2008;134:111–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Bories PN, Campillo B, Azaou L, et al. Long-lasting NO overproduction in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 1997;25:1328–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Grangé JD, Amiot X. Nitric oxide and renal function in cirrhotic patients with ascites: from pathophysiology to practice. Eur J Gastroenterol Hepatol. 2004;16:567–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Davenport A. Difficulties in assessing renal function in patients with cirrhosis: potential impact on patient treatment. Intensive Care Med. 2011;37:930–2.CrossRefPubMedGoogle Scholar
  27. 27.
    Salerno F, Gines A, Ginès P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007;56:1310–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wong F, Nadim MK, Kellum JA, et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut. 2011;60:702–9.CrossRefGoogle Scholar
  29. 29.
    Angeli P, Gatta A, Caregaro L, et al. Tubular site of renal sodium retention in ascitic liver cirrhosis evaluated by lithium clearance. Eur J Clin Investig. 1990;20:111–7.CrossRefGoogle Scholar
  30. 30.
    Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013;62:131–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Wong F, O’Leary JG, Reddy KR, et al. New consensus definition of acute kidney injury accurately predicts 30-day mortality in patients with cirrhosis and infection. Gastroenterology. 2013;145(6):1280–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arroyo V. Acute kidney injury (AKI) in cirrhosis: should we change current definition and diagnostic criteria of renal failure in cirrhosis? J Hepatol. 2013;59:415–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Cardenas A. Defining renal failure in cirrhosis—acute kidney injury classification or traditional criteria? Ann Hepatol. 2013;12:984–5.PubMedGoogle Scholar
  34. 34.
    Piano S, Rosi S, Maresio G, et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. J Hepatol. 2013;59:482–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Fagundes C, Barreto R, Guevara M, et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol. 2013;59:474–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Ferreira CN, Rodrigues T, Cortez-Pinto H, et al. The new definition of acute kidney injury in patients with cirrhosis: a critical look. Gut. 2012;61:1513.CrossRefGoogle Scholar
  37. 37.
    Newsome BB, Warnock DG, McClellan WM, et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch Intern Med. 2008;168:609–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Belcher JM, Garcia-Tsao G, Sanyal AJ, et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology. 2013;57(2):753–62.CrossRefGoogle Scholar
  39. 39.
    Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. Gut. 2015;64(4):531–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Wong F, et al. Reduction in acute kidney injury (AKI) is a strong predictor of survival in patients with hepatorenal syndrome type-1 (HRS-1) treated with terlipressin plus albumin or albumin alone. Nephrol Dial Transplant. 2015;30:Siii451.CrossRefGoogle Scholar
  41. 41.
    Scott RA, Austin AS, Kolhe NV, et al. Acute kidney injury is independently associated with death in patients with cirrhosis. Frontline Gastroenterol. 2013;4:191–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Martin-Llahi M, Guevara M, Torre A, et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology. 2011;140:488–96.CrossRefPubMedGoogle Scholar
  43. 43.
    Gines A, Escorsell A, Gines P, et al. Incidence, predictive factors, and prognosis of the hepatorenal syndrome in cirrhosis with ascites. Gastroenterology. 1993;105:229–36.CrossRefPubMedGoogle Scholar
  44. 44.
    Wong F, Leung W, Beshir M, et al. Outcomes of patients with cirrhosis and hepatorenal syndrome type 1 treated with liver transplantation. Liver Transpl. 2015;21(3):300–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Magri P, Auletta M, Andreucci M, et al. Sodium retention in preascitic stage of cirrhosis. Semin Nephrol. 2001;21(3):317–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Diamond JR, Yoburn DC. Nonoligouric acute renal failure associated with a low fractional excretion of sodium. Ann Intern Med. 1982;96(5):597–600.CrossRefPubMedGoogle Scholar
  47. 47.
    Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357(8):797–805.CrossRefPubMedGoogle Scholar
  48. 48.
    Verna EC, Brown RS, Farrand E, et al. Urinary neutrophil gelatinase-associated lipocalin predicts mortality and identifies acute kidney injury in cirrhosis. Dig Dis Sci. 2012;57(9):2362–70.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Belcher JM, Edelstein CL, Parikh CR. Clinical applications of biomarkers for acute kidney injury. Am J Kidney Dis. 2011;57(6):930–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Fagundes C, Pepin MN, Guevara M, et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J Hepatol. 2012;57(2):267–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Qasem AA, Farag SE, Hamed E, et al. Urinary biomarkers of acute kidney injury in patients with cirrhosis. ISRN Nephrol. 2014:376795. Scholar
  52. 52.
    Belcher JM, Sanyal AJ, Peixoto AJ, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014;60(2):622–32.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ariza X, Solà E, Elia C, et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One. 2015;10(6):e0128145.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cavallin M, Fasolato S, Marenco S, et al. The treatment of hepatorenal syndrome. Dig Dis. 2015;33(4):548–54.CrossRefPubMedGoogle Scholar
  55. 55.
    Boyer TD, Sanyal AJ, Wong F, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150(7):1579–89.CrossRefPubMedGoogle Scholar
  56. 56.
    Sanyal AJ, Boyer TD, Frederick RT, et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomized clinical studies. Aliment Pharmacol Ther. 2017;45(11):1390–401.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cavallin M, Piano S, Romano A, et al. Terlipressin given by continuous intravenous infusion verses intravenous boluses in the treatment of hepatorenal syndrome: a randomized controlled study. Hepatology. 2016;63:983–92.CrossRefPubMedGoogle Scholar
  58. 58.
    Nazar A, Pereira GH, Guevara M, et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology. 2010;51(1):219–26.CrossRefPubMedGoogle Scholar
  59. 59.
    Sharma P, Kumar A, Sharma BC, et al. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol. 2008;103(7):1689–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Boyer TD, Sanyal AJ, Garcia-Tsao G, et al. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J Hepatol. 2011;55(2):315–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Cavallin M, Kamath PS, Merli M, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology. 2015;62(2):567–74.CrossRefPubMedGoogle Scholar
  62. 62.
    de Mattos AZ, de Mattos AA, Ribeiro RA. Terlipressin versus noradrenaline in the treatment of hepatorenal syndrome: systematic review with meta-analysis and full economic evaluation. Eur J Gastroenterol Hepatol. 2016;28:345–51.CrossRefPubMedGoogle Scholar
  63. 63.
    Srivastava S, Shalimar, Vishnubhatla S, et al. Randomized controlled trial comparing the efficacy of Terlipressin and albumin with a combination of concurrent dopamine, furosemide, and albumin in hepatorenal syndrome. J Clin Exp Hepatol. 2015;5(4):276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Guevara M, Ginès P, Bandi JC, et al. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. J Hepatol. 1998;28(2):416–22.CrossRefGoogle Scholar
  65. 65.
    Brensing KA, Textor J, Perz J, et al. Long term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study. Gut. 2000;47:288–95.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bai M, Qi XS, Yang ZP, et al. TIPS improves liver transplantation-free survival in cirrhotic patients with refractory ascites: an updated meta-analysis. World J Gastroenterol. 2014;20(10):2704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Capling RK, Bastani B. The clinical course of patients with type 1 hepatorenal syndrome maintained on hemodialysis. Ren Fail. 2004;26:563–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Keller F, Heinze H, Jochimsen F, et al. Risk factors and outcomes of 107 patients with decompensated liver disease and acute renal failure (including 26 patients with hepatorenal syndrome): the role of hemodialysis. Ren Fail. 1995;17:135–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Wong LP, Blackley MP, Andreoni KA, et al. Survival of liver transplant candidates with acute renal failure receiving renal replacement therapy. Kidney Int. 2005;68:362–70.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang Z, Maddukuri G, Jaipail N, et al. Role of renal replacement therapy in patients with type 1 hepatorenal syndrome receiving combination treatment of vasoconstrictor therapy and albumin. J Crit Care. 2015;30(5):969–74.CrossRefPubMedGoogle Scholar
  71. 71.
    Wlodzimirow KA, Eslami S, Abu-Hanna A, et al. A systematic review on prognostic indicators of acute on chronic liver failure and their predictive value for mortality. Liver Int. 2013;33:40–52.CrossRefPubMedGoogle Scholar
  72. 72.
    Jalan R, Williams R. Acute-on-chronic liver failure: pathophysiological basis of therapeutic options. Blood Purif. 2002;20:252–61.CrossRefPubMedGoogle Scholar
  73. 73.
    Sarin S, Kumar A, Almeida JA, et al. Acute-on-chronic-liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.CrossRefPubMedGoogle Scholar
  74. 74.
    Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37.CrossRefPubMedGoogle Scholar
  75. 75.
    Jalan R, Yurdaydin C, Bajaj JS, et al. Toward an improved definition of acute-on-chronic liver failure. Gastroenterology. 2014;147:4–10.CrossRefGoogle Scholar
  76. 76.
    Jalan R, Saliba F, Pavesi M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol. 2014;61(5):1038–47.CrossRefGoogle Scholar
  77. 77.
    Bajaj JS, O’Learey JG, Reddy KR, et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology. 2014;60(1):250–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bernal W, Jalan R, Quaglia A, et al. Acute-on-chronic liver failure. Lancet. 2015;386(10003):1576–87.CrossRefPubMedGoogle Scholar
  79. 79.
    Moreau R, Arroyo A. Acute-on-chronic liver failure: a new clinical entity. Clin Gastroenterol Hepatol. 2015;13(5):836–41.CrossRefPubMedGoogle Scholar
  80. 80.
    Garg H, Kumar A, Garg V, et al. Clinical profile and predictors of mortality in patients of acute-on-chronic liver failure. Dig Liver Dis. 2012;44(2):166–71.CrossRefPubMedGoogle Scholar
  81. 81.
    Jindal A, Sarin SK, et al. Acute kidney injury (AKI) at admission and its response to terlipressin as a predictor of mortality in patients with acute-on-chronic liver failure (ACLF). J Hepatol. 2013;58(Suppl 1):S89.CrossRefGoogle Scholar
  82. 82.
    Maiwall R, Kumar S, Vashishtha C, et al. Acute kidney injury (AKI) in patients with acute on chronic liver failure (ACLF) is different from patients with cirrhosis. Hepatology. 2012;58(4 Suppl):36A–91A.Google Scholar
  83. 83.
    Angeli P, Rodríguez E, Piano S, et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut. 2015;64(10):1616–22.CrossRefPubMedGoogle Scholar
  84. 84.
    Ariza X, Graupera I, Coll M, et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol. 2016;65:57. CrossRefPubMedGoogle Scholar
  85. 85.
    Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure. J Hepatol. 2012;57(6):1336–48.CrossRefGoogle Scholar
  86. 86.
    Fernandez J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133:818–24.CrossRefPubMedGoogle Scholar
  87. 87.
    Shah N, El Zahraa Dhar D, Mohammed F, et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol. 2012;56:1047–53.CrossRefPubMedGoogle Scholar
  88. 88.
    Parker R, Armstrong MJ, Corbett C, et al. Systematic review: pentoxifylline for the treatment of severe alcoholic hepatitis. Aliment Pharmacol Ther. 2013;37(9):845–54.CrossRefPubMedGoogle Scholar
  89. 89.
    Sidhu SS, Goyal O, Singla M, et al. Pentoxifylline in severe alcoholic hepatitis: a prospective, randomized trial. J Assoc Physicians India. 2012;60:20–2.PubMedGoogle Scholar
  90. 90.
    Nguyen-Khac E, Thevenot T, Piquet MA, et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med. 2011;365(19):1781–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Lebrec D, Thabut D, Oberti F, et al. Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology. 2010;138:1755–62.CrossRefPubMedGoogle Scholar
  92. 92.
    Thursz MR, Richardson P, Allison M, et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med. 2015;372:1619–28.CrossRefPubMedGoogle Scholar
  93. 93.
    Duan XZ, Liu FF, Tong JJ, et al. Granulocyte-colony stimulating factor therapy improves survival in patients with hepatitis B virus-associated acute-on-chronic liver failure. World J Gastroenterol. 2013;19(7):1104–10.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Garg V, Garg H, Khan A, et al. Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology. 2012;142(3):505–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Nephrology, Department of Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations