Emerging Therapies: What’s on the Horizon?

  • Lynn RedahanEmail author
  • Patrick T. Murray


Acute kidney injury (AKI) is a common complication with far-reaching consequences. There is currently no approved therapy to prevent or treat this condition but there are numerous potential agents on the horizon. At a cellular level, important targets include mitochondria, the cell membrane, and the endoplasmic reticulum. In particular, mitochondria have been shown to play a pivotal role in the pathogenesis of AKI. Several novel therapies have been developed to target these organelles. A variety of cell surface receptors have been implicated in the processes of injury and repair in AKI. Several new drugs are targeting receptors to treat or prevent AKI. A number of novel agents with antisepsis properties are also in development, and some have the potential to treat, as well as prevent, AKI. Many of these agents are at an advanced stage of development and may become therapeutic options in the near future. However, there have been many proposed therapies that have failed to yield positive results in clinical trials despite promising preclinical studies. Flaws in trial design may be partly to blame. In addition, the complex and multisystemic nature of AKI makes research in this area very challenging. The ideal therapy is safe and efficacious and has the ability to target a common feature in the pathogenesis of AKI, regardless of the triggering injury.


Cellular Molecular Mitochondria Antisepsis Negative trials 


  1. 1.
    Wen X, Peng Z, Li Y, Wang H, Bishop JV, Chedwick LR, et al. One dose of cyclosporine A is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrol Dial Transplant. 2012;27(8):3100–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cour M, Abrial M, Jahandiez V, Loufouat J, Belaïdi E, Gharib A, et al. Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure. J Appl Physiol. 2014;117(8):930–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Lemoine S, Pillot B, Augeul L, Rabeyrin M, Varennes A, Normand G, et al. Dose and timing of injections for effective cyclosporine A pretreatment before renal ischemia reperfusion in mice. PLoS One. 2017;12(8):e0182358.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Parajuli N, Campbell L, Marine A, Brockbank K, MacMillan-Crow L. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys. PLoS One. 2012;7(11):e48590.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dare A, Bolton E, Pettigrew G, Bradley J, Saeb-Parsy K, Murphy M. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015;5:163–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gane E, Weilert F, Orr D, Keogh G, Gibson M, Lockhart M, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30(7):1019–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25(11):1670–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med. 2012;52(2):497–506.CrossRefPubMedGoogle Scholar
  9. 9.
    Birk A, Liu S, Soong Y, Mills W, Singh P, Warren D, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng F-YY, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011;22(6):1041–52.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Whitaker R, Wills L, Stallons J, Schnellmann R. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J Pharmacol Exp Ther. 2013;347(3):626–34.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lledo-Garcia E, Subira-Rios D, Ogaya-Pinies G, Tejedor-Jorge A, Cañizo-Lopez J, Hernandez-Fernandez C. Intravenous sildenafil as a preconditioning drug against hemodynamic consequences of warm ischemia-reperfusion on the kidney. J Urol. 2011;186(1):331–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Lauver DA, Carey EG, Bergin IL, Lucchesi BR, Gurm HS. Sildenafil citrate for prophylaxis of nephropathy in an animal model of contrast-induced acute kidney injury. PLoS One. 2014;9(11):e113598.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Almeida LS, Barboza JR, Freitas FP, Porto ML, Vasquez EC, Meyrelles SS, et al. Sildenafil prevents renal dysfunction in contrast media-induced nephropathy in Wistar rats. Hum Exp Toxicol. 2016;35(11):1194–1202.CrossRefGoogle Scholar
  15. 15.
    Mohey V, Singh M, Puri N, Kaur T, Pathak D, Singh AP. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J Surg Res. 2016;201(1):69–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Ring A, Morris T, Wozniak M, Sullo N, Dott W, Verheyden V, et al. A phase I study to determine the pharmacokinetic profile, safety and tolerability of sildenafil (Revatio® ) in cardiac surgery: the REVAKI-1 study. Br J Clin Pharmacol. 2017;83(4):709–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Krane LS, Peyton CC, Olympio MA, Hemal AK. A randomized double blinded placebo controlled trial of sildenafil for renoprotection prior to hilar clamping in patients undergoing robotic assisted laparoscopic partial nephrectomy. J Surg Oncol. 2016;114(7):785–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Cassidy-Stone A, Chipuk J, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brooks C, Wei Q, Cho S-G, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119(5):1275–85.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26(10):2378–87.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hodeify R, Megyesi J, Tarcsafalvi A, Mustafa H, Seng N, Price P. Gender differences control the susceptibility to ER stress-induced acute kidney injury. Am J Physiol Renal Physiol. 2013;304(7):F875–82.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carlisle R, Brimble E, Werner K, Cruz G, Ask K, Ingram A, et al. 4-phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression. PLoS One. 2014;9(1):e84663.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng P, Ma Q, Wang L, Zhang O, Han H, Liu X, et al. Preconditioning with tauroursodeoxycholic acid protects against contrast-induced HK-2 cell apoptosis by inhibiting endoplasmic reticulum stress. Angiology. 2015;66(10):941–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Khan MA, Liu J, Kumar G, Skapek SX, Falck JR, Imig JD. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J. 2013;27(8):2946–56.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang J-G, Chen C-L, Card J, Yang S, Chen J-X, Fu X-N, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65(11):4707–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Jiang J-G, Ning Y-G, Chen C, Ma D, Liu Z-J, Yang S, et al. Cytochrome P450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007;67(14):6665–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Bajwa A, Jo S-KK, Ye H, Huang L, Dondeti KR, Rosin DL, et al. Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21(6):955–65.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26(4):908–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Park SW, Kim M, Kim M, D’Agati VD, Lee HT. Sphingosine kinase 1 protects against renal ischemia-reperfusion injury in mice by sphingosine-1-phosphate1 receptor activation. Kidney Int. 2011;80(12):1315–27.CrossRefPubMedGoogle Scholar
  30. 30.
    Yeboah MM, Xue X, Javdan M, Susin M, Metz CN. Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2008;295(3):F654–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sadis C, Teske G, Stokman G, Kubjak C, Claessen N, Moore F, et al. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway. PLoS One. 2007;2(5):e469.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chatterjee PK, Yeboah MM, Dowling O, Xue X, Powell SR, Al-Abed Y, et al. Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity. PLoS One. 2012;7(5):e35361.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013;24(9):1451–60.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Matsumura Y, Taira S, Kitano R, Hashimoto N, Kuro T. Selective antagonism of endothelin ET(A) or ET(B) receptor in renal hemodynamics and function of deoxycorticosterone acetate-salt-induced hypertensive rats. Biol Pharm Bull. 1999;22(8):858–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Chade AR, Krier JD, Textor SC, Lerman A, Lerman LO. Endothelin-a receptor blockade improves renal microvascular architecture and function in experimental hypercholesterolemia. J Am Soc Nephrol. 2006;17(12):3394–403.CrossRefPubMedGoogle Scholar
  36. 36.
    Herrero I, Torras J, Riera M, Condom E, Coll O, Cruzado JM, et al. Prevention of cold ischaemia-reperfusion injury by an endothelin receptor antagonist in experimental renal transplantation. Nephrol Dial Transplant. 1999;14(4):872–80.CrossRefPubMedGoogle Scholar
  37. 37.
    Wilhelm SM, Stowe NT, Robinson AV, Schulak JA. The use of the endothelin receptor antagonist, tezosentan, before or after renal ischemia protects renal function. Transplantation. 2001;71(2):211–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Helmy MM, Helmy MW, Abd Allah DM, Abo Zaid AM, Mohy El-Din MM. Selective ET(A) receptor blockade protects against cisplatin-induced acute renal failure in male rats. Eur J Pharmacol. 2014;730:133–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Patel NN, Toth T, Jones C, Lin H, Ray P, George SJ, et al. Prevention of post-cardiopulmonary bypass acute kidney injury by endothelin A receptor blockade. Crit Care Med. 2011;39(4):793–802.CrossRefPubMedGoogle Scholar
  40. 40.
    Kim B, Lim S, Li C, Kim J, Sun B, Ahn K, et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation. 2005;79(10):1370–7.CrossRefGoogle Scholar
  41. 41.
    Wolfs T, Buurman W, van Schadewijk A, de Vries B, Daemen M, Hiemstra P, et al. In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: IFN-γ and TNF-α mediated up-regulation during inflammation. J Immunol. 2002;168(3):1286–93.CrossRefGoogle Scholar
  42. 42.
    Kim H, Park S, Koo S, Cha H, Lee J, Kwon B, et al. Inhibition of kidney ischemia–reperfusion injury through local infusion of a TLR2 blocker. J Immunol Methods. 2014;407:146–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Farrar C, Keogh B, McCormack W, O’Shaughnessy A, Parker A, Reilly M, et al. Inhibition of TLR2 promotes graft function in a murine model of renal transplant ischemia-reperfusion injury. FASEB J. 2012;26(2):799–807.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim DH, Jung YJ, Lee AS, Lee S, Kang KP, Lee TH, et al. COMP-angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney Int. 2009;76(11):1180–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee S, Kim W, Kim DH, Moon S-OO, Jung YJ, Lee AS, et al. Protective effect of COMP-angiopoietin-1 on cyclosporine-induced renal injury in mice. Nephrol Dial Transplant. 2008;23(9):2784–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Long DA, Price KL, Ioffe E, Gannon CM, Gnudi L, White KE, et al. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int. 2008;74(3):300–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Jung YJ, Kim DH, Lee AS, Lee S, Kang KP, Lee SY, et al. Peritubular capillary preservation with COMP-angiopoietin-1 decreases ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol. 2009;297(4):F952–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol. 2006;291(1):F176–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Bo C-JJ, Chen B, Jia R-PP, Zhu J-GG, Cao P, Liu H, et al. Effects of ischemic preconditioning in the late phase on homing of endothelial progenitor cells in renal ischemia/reperfusion injury. Transplant Proc. 2013;45(2):511–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Togel FE, Westenfelder C. Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int Suppl (2011). 2011;1(3):87–9.CrossRefGoogle Scholar
  51. 51.
    Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol. 2003;14(1):128–38.CrossRefPubMedGoogle Scholar
  52. 52.
    Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20(8):1754–64.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.CrossRefGoogle Scholar
  54. 54.
    Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR, et al. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol. 2010;21(11):1878–90.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li J, Gong Q, Zhong S, Wang L, Guo H, Xiang Y, et al. Neutralization of the extracellular HMGB1 released by ischaemic damaged renal cells protects against renal ischaemia-reperfusion injury. Nephrol Dial Transplant. 2011;26(2):469–78.CrossRefGoogle Scholar
  56. 56.
    Wu H, Steenstra R, de Boer EC, Zhao CY, Ma J, van der Stelt JM, et al. Preconditioning with recombinant high-mobility group box 1 protein protects the kidney against ischemia-reperfusion injury in mice. Kidney Int. 2014;85(4):824–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, et al. Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med. 2006;203(7):1637–42.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fink MP. Ethyl pyruvate: a novel treatment for sepsis. Curr Drug Targets. 2007;8(4):515–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Chung K-YY, Park J-JJ, Kim YS. The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate. Transplant Proc. 2008;40(7):2136–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB. HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol. 2012;303(6):F873–85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pickkers P, Heemskerk S, Schouten J, Laterre P-FF, Vincent J-LL, Beishuizen A, et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care. 2012;16(1):R14.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq M-PP. Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis. 2008;13(1):11–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Daemen MA, van ‘t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest. 1999;104(5):541–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Guo R, Wang Y, Minto AW, Quigg RJ, Cunningham PN. Acute renal failure in endotoxemia is dependent on caspase activation. J Am Soc Nephrol. 2004;15(12):3093–102.CrossRefPubMedGoogle Scholar
  65. 65.
    Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006;69(8):1385–92.CrossRefGoogle Scholar
  66. 66.
    Shiffman ML, Pockros P, McHutchison JG, Schiff ER, Morris M, Burgess G. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor—a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther. 2010;31(9):969–78.PubMedGoogle Scholar
  67. 67.
    Khan NA, Khan A, Savelkoul HF, Benner R. Inhibition of septic shock in mice by an oligopeptide from the beta-chain of human chorionic gonadotrophin hormone. Hum Immunol. 2002;63(1):1–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Khan NA, Susa D, van den Berg JW, Huisman M, Ameling MH, van den Engel S, et al. Amelioration of renal ischaemia-reperfusion injury by synthetic oligopeptides related to human chorionic gonadotropin. Nephrol Dial Transplant. 2009;24(9):2701–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Gueler F, Shushakova N, Mengel M, Hueper K, Chen R, Liu X, et al. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice. PLoS One. 2015;10(1):e0115709.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest. 1998;102(1):202–14.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol. 2000;279(1):F130–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Gillies MA, Kakar V, Parker RJ, Honoré PM, Ostermann M. Fenoldopam to prevent acute kidney injury after major surgery—a systematic review and meta-analysis. Crit Care. 2015;19(1):449.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.CrossRefPubMedGoogle Scholar
  74. 74.
    Chiao H, Kohda Y, McLeroy P, Craig L, Linas S, Star RA. Alpha-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int. 1998;54(3):765–74.CrossRefPubMedGoogle Scholar
  75. 75.
    Jo SK, Yun SY, Chang KH, Cha DR, Cho WY, Kim HK, et al. alpha-MSH decreases apoptosis in ischaemic acute renal failure in rats: possible mechanism of this beneficial effect. Nephrol Dial Transplant. 2001;16(8):1583–91.CrossRefPubMedGoogle Scholar
  76. 76.
    Doi K, Hu X, Yuen PS, Leelahavanichkul A, Yasuda H, Kim SM, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73(11):1266–74.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Simmons MN, Subramanian V, Crouzet S, Haber G-PP, Colombo JR, Ukimura O, et al. Alpha-melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model. J Urol. 2010;183(4):1625–9.CrossRefPubMedGoogle Scholar
  78. 78.
    McCullough PA, Bennett-Guerrero E, Chawla LS, Beaver T, Mehta RL, Molitoris BA, et al. ABT-719 for the Prevention of Acute Kidney Injury in Patients Undergoing High-Risk Cardiac Surgery: A Randomized Phase 2b Clinical Trial. Am Heart Assoc. 2016;5(8):e003549.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kelly KJ, Sutton TA, Weathered N, Ray N, Caldwell EJ, Plotkin Z, et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2004;287(4):F760.CrossRefPubMedGoogle Scholar
  80. 80.
    Wang J, Wei Q, Wang C-Y, Hill W, Hess D, Dong Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem. 2004;279(19):19948–54.CrossRefPubMedGoogle Scholar
  81. 81.
    Golestaneh L, Lindsey K, Malhotra P, Kargoli F, Farkas E, Barner H, et al. Acute kidney injury after cardiac surgery: is minocycline protective? J Nephrol. 2015;28(2):193–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Lewicki M, Ng I, Schneider AG. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass. Cochrane Database Syst Rev 2015;(3):CD010480.Google Scholar
  83. 83.
    Ding H, Kopple JD, Cohen A, Hirschberg R. Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest. 1993;91(5):2281–7.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Friedlaender M, Popovtzer MM, Weiss O, Nefesh I, Kopolovic J, Raz I. Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA. J Am Soc Nephrol. 1995;5(10):1782–91.PubMedGoogle Scholar
  85. 85.
    Miller SB, Martin DR, Kissane J, Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A. 1992;89(24):11876–80.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hirschberg R, Kopple J, Lipsett P, Benjamin E, Minei J, Albertson T, et al. Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int. 1999;55(6):2423–32.CrossRefPubMedGoogle Scholar
  87. 87.
    Haase M, Haase-Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, et al. Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med. 2013;10(4):e1001426.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M. Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med. 2013;41(7):1599–607.CrossRefPubMedGoogle Scholar
  89. 89.
    Kristeller JL, Zavorsky GS, Prior JE, Keating DA, Brady MA, Romaldini TA, et al. Lack of effectiveness of sodium bicarbonate in preventing kidney injury in patients undergoing cardiac surgery: a randomized controlled trial. Pharmacotherapy. 2013;33(7):710–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Yunos N, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRefGoogle Scholar
  91. 91.
    Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the Intensive Care Unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.CrossRefGoogle Scholar
  92. 92.
    Erika I. Boesen, (2016) Lack of an apparent role for endothelin-1 in the prolonged reduction in renal perfusion following severe unilateral ischemia-reperfusion injury in the mouse. Physiological Reports 4 (21):e13027.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Madhav Swaminathan, Mark Stafford-Smith, Glenn M. Chertow, David G. Warnock, Viken Paragamian, Robert M. Brenner, François Lellouche, Alison Fox-Robichaud, Mohamed G. Atta, Spencer Melby, Ravindra L. Mehta, Ron Wald, Subodh Verma, C. David Mazer, Allogeneic Mesenchymal Stem Cells for Treatment of AKI after Cardiac Surgery. Journal of the American Society of Nephrology:ASN.2016101150.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity College DublinDublinIreland

Personalised recommendations