Effects of Man-Made Sound on Terrestrial Mammals

  • Hans SlabbekoornEmail author
  • JoAnn McGee
  • Edward J. Walsh
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)


Terrestrial mammals are found in all types of natural habitat, and they are also maintained in large numbers in captivity. Much of what is known about the anatomy and physiology of the peripheral auditory system has been learned by studying a variety of laboratory mammals and a smaller collection of exotic and domesticated species. The influence of noise exposure ranges from overt trauma to cochlear structures to nonauditory physiological effects, including outcomes associated with development and behavior. Although most man-made sounds are insufficiently intense or persistent to cause overt trauma to free-ranging terrestrial mammals, recent studies have shown that noise exposures producing reversible hearing loss can still permanently damage synapses between auditory sensory cells and primary auditory nerve fibers and thereby affect hearing function. Harmful effects of noise exposure on nonauditory functions have also been reported, and work on domesticated animals adds further evidence that exposure to noise can induce stress with effects on physiology and behavior. Studies on free-ranging animals have shown that animals are often deterred from busy roads, industrial areas, or noisy recreational activities and that foraging efficiency declines for at least some herbivore species. The wide-ranging diversity of auditory thresholds and spectral ranges of sound detected by terrestrial mammals adds a dimension of complexity in the effort to understand the impact of man-made noise on animals.


Ear anatomy Farm and zoo animals Inner ear trauma Mammalian hearing Masking and counterstrategies Nonauditory effects Road disturbance Vocal plasticity 


Compliance with Ethics Requirements

Hans Slabbekoorn declares that he has no conflict of interest.

JoAnn McGee declares that she has no conflict of interest.

Edward J. Walsh declares that he has no conflict of interest.


  1. Agnes, F., Sartorelli, P., Abdi, B. H., & Locatelli, A. (1990). Effect of transport loading or noise on blood biochemical variables in calves. American Journal of Veterinary Research, 51, 1679-1681.PubMedGoogle Scholar
  2. Alario, P., Gamallo, A., Beato, M. J., & Trancho, G. (1987). Body weight gain, food intake and adrenal development in chronic noise stressed rats. Physiology & Behavior, 40, 29-32.CrossRefGoogle Scholar
  3. Algers, B., & Jensen, P. (1985). Communication during suckling in the domestic pig. Effects of continuous noise. Applied Animal Behaviour Science, 14, 49-61.CrossRefGoogle Scholar
  4. Algers, B., Ekesbo, I., & Strömberg, S. (1978). The impact of continuous noise on animal health. Acta Veterinaria Scandinavica Supplementum, 68, 1-26.Google Scholar
  5. Ashmore, J. (2008). Cochlear outer hair cell motility. Physiological Reviews, 88, 173-210.CrossRefPubMedGoogle Scholar
  6. Babisch, W., Fromme, H., Beyer, A., & Ising, H. (2001). Increased catecholamine levels in urine in subjects exposed to road traffic noise: The role of stress hormones in noise research. Environment International, 26, 475-481.CrossRefPubMedGoogle Scholar
  7. Baker, P. J., & Harris, S. (2007). Urban mammals: What does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mammal Reviews, 37, 297-315.Google Scholar
  8. Ballachanda, B. B. (1997). Theoretical and applied external ear acoustics. Journal of the American Academy of Audiology, 8, 411-420.PubMedGoogle Scholar
  9. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25, 180-189.CrossRefPubMedGoogle Scholar
  10. Berglund, B., Hassmén, P., & Job, R. F. (1996). Sources and effects of low-frequency noise. The Journal of the Acoustical Society of America, 99, 2985-3002.CrossRefPubMedGoogle Scholar
  11. Birke, L. (2002). Effects of browse, human visitors and noise on the behaviour of captive orang utans. Animal Welfare, 11, 189-202.Google Scholar
  12. Bradshaw, C. J. A., Boutin, S., & Hebert, D. M. (1997). Effects of petroleum exploration on woodland caribou in northeastern Alberta. The Journal of Wildlife Management, 61, 1127-1133.CrossRefGoogle Scholar
  13. Bradshaw, R. H., Parrott, R. F., Goode, J. A., Lloyd, D. M., Rodway, R. G., & Broom, D. M. (1996). Behavioural and hormonal responses of pigs during transport: Effect of mixing and duration of journey. Animal Science 62, 547-554.CrossRefGoogle Scholar
  14. Braga, J., Loubes J.-M., Descouens, D., Dumoncel, J., Thackeray, J. F., Kahn, J.-L., de Beer, F., Riberon, A., Hoffman, K., Balaresque, P., & Gilissen, E. (2015). Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE, 10(6), e0127780.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Brask, T. (1978). The noise protection effect of the stapedius reflex. Acta Oto-Laryngologica, 86, 116-117.CrossRefGoogle Scholar
  16. Brownell, W. E. (1983). Observations on a motile response in isolated outer hair cells. In W. R. Webster & L. M. Aitken (Eds.), Mechanisms of Hearing (pp. 5-10). Clayton, Victoria, Australia: Monash University Press.Google Scholar
  17. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151-209.CrossRefGoogle Scholar
  18. Brumm, H., Voss, K., Köllmer, I., & Todt, D. (2004). Acoustic communication in noise: Regulation of call characteristics in a New World monkey. Journal of Experimental Biology, 207, 443-448.CrossRefPubMedGoogle Scholar
  19. Bunkley, J. P., & Barber, J. R. (2015). Noise reduces foraging efficiency in pallid bats (Antozous pallidus). Ethology, 121, 1116-1121.CrossRefGoogle Scholar
  20. Bunkley, J. P., McClure, C. J. W., Kleist, N. J., Francis, C. D., & Barber, J. R. (2015). Anthropogenic noise alters bat activity levels and echolocation calls. Global Ecology and Conservation, 3, 62-71.CrossRefGoogle Scholar
  21. Buran, B. N., Strenzke, N., Neef, A., Gundelfinger, E. D., Moser, T., & Liberman, M. C. (2010). Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. The Journal of Neuroscience, 30, 7587-7597.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Burow, A., Day, H. E., & Campeau, S. (2005). A detailed characterization of loud noise stress, intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Research, 1062, 63-73.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Chen, H. L., & Koprowski, J. L. (2015). Animal occurrence and space use change in the landscape of anthropogenic noise. Biological Conservation, 192, 315-322.CrossRefGoogle Scholar
  24. Clark, J. G. (1981). Uses and abuses of hearing loss classification. American Speech-Language-Hearing Association, 23, 493-500.Google Scholar
  25. Clark, W. W. (1991). Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. The Journal of the Acoustical Society of America, 90, 155-163.CrossRefPubMedGoogle Scholar
  26. Cooke, C. M., & Schillaci, M. A. (2007). Behavioral responses to the zoo environment by white handed gibbons. Applied Animal Behaviour Science, 106, 125-133.CrossRefGoogle Scholar
  27. Coordes, A., Gröschel, M., Ernst, A., & Basta, D. (2012). Apoptotic cascades in the central auditory pathway after noise exposure. Journal of Neurotrauma, 29, 1249-1254.CrossRefPubMedGoogle Scholar
  28. Coppola, C. L., Enns, R. M., & Grandin, T. (2006). Noise in the animal shelter environment: Building design and the effects of daily noise exposure. Journal of Applied Animal Welfare Science, 9, 1-7.CrossRefPubMedGoogle Scholar
  29. Creel, S., Fox, J. E., Hardy, A., Sands, J., Garrott, B., & Peterson, R. O. (2002). Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conservation Biology, 16, 809-814.CrossRefGoogle Scholar
  30. Cui, B., Gai, Z., She, X., Wang, R., & Xi, Z. (2016). Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Scientific Reports, 6, 36693.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Duarte, M. H. L., Vecci, M. A., Hirsch, A., & Young, R. Y. (2011). Noisy human neighbours affect where urban monkeys live. Biology Letters, 7, 840-842.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Edge, A. S., & Chen, Z. Y. (2008). Hair cell regeneration. Current Opinion in Neurobiology, 18, 377-382.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Eggermont, J. J. (2017). Acquired hearing loss and brain plasticity. Hearing Research, 343, 176-190.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Egnor, S. E., & Hauser, M. D. (2006). Noise-induced vocal modulation in cotton-top tamarins (Saguinus oedipus). American Journal of Primatology, 68, 1183-1190.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Egnor, S. E., Wickelgren, J. G., & Hauser, M. D. (2007). Tracking silence: Adjusting vocal production to avoid acoustic interference. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 477-483.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fay, R. R. (1988). Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  37. Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207-231.CrossRefGoogle Scholar
  38. Francis, C. D., Keist, N. J., Ortega, C. P., & Cruz, A. (2012). Noise pollution alters ecological services: Enhanced pollination and disrupted seed dispersal. Proceedings of the Royal Society B: Biological Sciences, 279, 2727-2735.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Francis, M. J., Spooner, P. G., & Matthews, A. (2015). The influence of urban encroachment on squirrel gliders (Petaurus norfolcensis): Effects of road density, light and noise pollution. Wildlife Research, 42, 324-333.CrossRefGoogle Scholar
  40. Freeman, S., Khvoles, R., Cherny, L., & Sohmer, H. (1999). Effect of long-term noise exposure on the developing and developed ear in the rat. Audiology & Neurotology, 4, 207-218.CrossRefGoogle Scholar
  41. Frost, S. B., & Masterton, R. B. (1994). Hearing in primitive mammals: Monodelphis domestica and Marmosa elegans. Hearing Research, 76, 67-72.CrossRefPubMedGoogle Scholar
  42. Gao, F., Zhang, J., Sun, X., & Chen, L. (2009). The effect of postnatal exposure to noise on sound level processing by auditory cortex neurons of rats in adulthood. Physiology & Behavior, 97, 369-373.CrossRefGoogle Scholar
  43. Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M., & Elliott, M. A. (1974). Peripheral auditory function in the platypus, Ornithorhynchus anatinus. The Journal of the Acoustical Society of America, 56, 152-156.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Geverink, N. A., Bühnemann, A., van de Burgwal, J. A., Lambooij, E., Blokhuis, H. J., & Wiegant, V. M. (1998). Responses of slaughter pigs to transport and lairage sounds. Physiology & Behavior, 63, 667-673.CrossRefGoogle Scholar
  45. Gomes, D. G. E., Page, R. A., Geipel, I., Taylor, R. C., Ryan, M. J., & Halfwerk, W. (2016). Bats perceptually weight prey cues across sensory systems when hunting in noise. Science, 6305, 1277-1280.CrossRefGoogle Scholar
  46. Gourévitch, B., Edeline, J. M., Occelli, F., & Eggermont, J. J. (2014). Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nature Reviews Neuroscience, 15, 483-491.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Griffiths, M. (1978). The Biology of the Monotremes. New York: Academic Press.Google Scholar
  48. Gue, M., Fioramonti, J., Frexinos, J., Alvinerie, M., & Bueno, L. (1987). Influence of acoustic stress by noise on gastrointestinal motility in dogs. Digestive Diseases and Sciences, 32, 1411-1417CrossRefPubMedPubMedCentralGoogle Scholar
  49. Guinan, J., J., Jr. (2006). Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and Hearing, 27, 589-607.CrossRefPubMedGoogle Scholar
  50. Guo, L., Li, P. H., Li, H., Colicino, E., Colicino, S., Wen, Y., Zhang, R., Feng, X., Barrow, T. M., Cayir, A., & Baccarelli, A. A. (2017). Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. Environmental Research, 153, 73-82.CrossRefPubMedGoogle Scholar
  51. Habersetzer, J. (1981). Adaptive echolocation sounds in the bat Rhinopoma hardwickei. A field study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 144, 559-566.CrossRefGoogle Scholar
  52. Hage, S. R., & Metzner, W. (2013). Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats. Communicative Integrative Biology 6, e24753.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Hage, S. R., Jiang, T., Berquist, S. W., Feng, J., & Metzner, W. (2013). Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences of the United States of America, 110, 4063-4068.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Halfwerk, W., & Slabbekoorn, H. (2015). Pollution going multimodal: The complex impact of the human-altered sensory environment on animal perception and performance. Biology Letters, 11, 20141051.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Hall, S. J. G., Kirkpatrick, S. M., Lloyd, D. M., & Broom, D. M. (1998). Noise and vehicular motion as potential stressors during the transport of sheep. Animal Science, 67, 467-473.CrossRefGoogle Scholar
  56. Heffner, H. E., Heffner, R. S., Contos, C., & Ott, T. (1994). Audiogram of the hooded Norway rat. Hearing Research, 73, 244-248.CrossRefPubMedGoogle Scholar
  57. Heffner, R. S., & Heffner, H. E. (1982). Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. Journal of Comparative Physiology and Psychology, 96, 926-944.CrossRefGoogle Scholar
  58. Heffner, R. S., & Heffner, H. E. (1985). Hearing range of the domestic cat. Hearing Research, 19, 85-88.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Heffner, R. S., & Heffner, H. E. (1992). Hearing and sound localization in blind mole rats, Spalax ehrenbergi. Hearing Research, 62, 206-216.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Heffner, R. S., Koay, G., & Heffner, H. E. (2006). Hearing in large (Eidolon helvum) and small (Cynopterus brachyotis) non-echolocating fruit bats. Hearing Research, 221, 17-25.CrossRefPubMedGoogle Scholar
  61. Hudspeth, A. J. (2014). Integrating the active process of hair cells with cochlear function. Nature Reviews Neuroscience, 15, 600-614.CrossRefPubMedGoogle Scholar
  62. International Organization for Standardization. (1961). Normal Equal-Loudness Level Contours for Pure Tones and Normal Threshold of Fearing Under Free Field Listening Conditions. ISO R/226:1961, International Organization for Standardization, Geneva.Google Scholar
  63. Jackson, L. L., Heffner, R. S., & Heffner, H. E. (1999). Free-field audiogram of the Japanese macaque (Macaca fuscata). The Journal of the Acoustical Society of America, 106, 3017-3023.CrossRefPubMedGoogle Scholar
  64. Katti, M., & Warren, P. S. (2004). Tits, noise and urban bioacoustics. Trends in Ecology and Evolution, 19, 109-110.CrossRefPubMedGoogle Scholar
  65. Kawase, T., & Liberman, M. C. (1993). Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. Journal of Neurophysiology, 70, 2519-2532.CrossRefPubMedGoogle Scholar
  66. Kerber, S., & Seeber, B. U. (2012). Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear and Hearing, 33, 445-457.PubMedCentralCrossRefPubMedGoogle Scholar
  67. Kern, J. M., & Radford, A. N. (2016). Anthropogenic noise disrupts use of vocal information about predation risk. Environmental Pollution, 218, 988-995.CrossRefPubMedGoogle Scholar
  68. Khimich, D., Nouvian, R., Pujol, R., tom Dieck, S., Egner, A., Gundelfinger, E. D., & Moser, T. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434, 889-894.CrossRefPubMedGoogle Scholar
  69. Kirk, E. C., & Smith, D. W. (2003). Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. Journal of the Association for Research in Otolaryngology, 4, 445-465.CrossRefGoogle Scholar
  70. Koay, G., Heffner, H. E., & Heffner, R. S. (1997). Audiogram of the big brown bat (Eptesicus fuscus). Hearing Research, 105, 202-210.CrossRefPubMedGoogle Scholar
  71. Konkle, A. T., Baker, S. L., Kentner, A. C., Barbagallo, L. S., Merali, Z., & Bielajew, C. (2003). Evaluation of the effects of chronic mild stressors on hedonic and physiological responses: Sex and strain compared. Brain Research, 992, 227-238.CrossRefPubMedGoogle Scholar
  72. Krausman, P. R., Wallace, M. C., Hayes, C. L., & DeYoung, D. W. (1998). Effects of jet aircraft on mountain sheep. Journal of Wildlife Management, 62, 1246-1254.CrossRefGoogle Scholar
  73. Krebs, H., Macht, M., Weyers, P., Weijers, H. G., & Janke, W. (1996). Effects of stressful noise on eating and non-eating behavior in rats. Appetite, 26, 193-202.CrossRefPubMedGoogle Scholar
  74. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29, 14077-14085.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Lanier, J. L., Grandin, T., Green, R. D., Avery, D., & McGee, K. (2000). The relationship between reaction to sudden, intermittent movements and sounds and temperament. Journal of Animal Science, 78, 1467-1474.CrossRefPubMedGoogle Scholar
  76. Larsen, M. J., Sherwen, S. L., & Rault, J.-L. (2014). Number of nearby visitors and noise level affect vigilance in captive koalas. Applied Animal Behaviour Science, 154, 76-82.CrossRefGoogle Scholar
  77. Laurian, C., Dussault, C., Ouellet, J.-P., Courtois, R., Poulin, M., & Breton, L. (2008). Behavior of moose relative to a road network. Journal of Wildlife Management, 72, 1550-1557.CrossRefGoogle Scholar
  78. Lavinsky, J., Ge, M., Crow, A. L., Pan, C., Wang, J., Salehi, P., Myint, A., Eskin, E., Allayee, H., Lusis, A. J., & Friedman, R. A. (2016). The genetic architecture of noise-induced hearing loss: Evidence for a gene-by-environment interaction. G3: Genes, Genomes, Genetics, 6, 3219-3228.Google Scholar
  79. Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12, 605-616.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Luo, J., Siemers, B. M., & Koselj, K. (2015). How anthropogenic noise affects foraging. Global Change Biology, 21, 3278-3289.CrossRefPubMedGoogle Scholar
  81. Mahendra Prashanth, K. V., & Sridhar, V. (2008). The relationship between noise frequency components and physical, physiological and psychological effects of industrial workers. Noise and Health, 10, 90-98.CrossRefPubMedGoogle Scholar
  82. Maison, S. F., & Liberman, M. C. (2000). Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. The Journal of Neuroscience, 20, 4701-4707.CrossRefPubMedGoogle Scholar
  83. Manley, G. A. (2012). Evolutionary paths to mammalian cochleae. Journal of the Association for Research in Otolaryngology, 13, 733-743.PubMedCentralCrossRefPubMedGoogle Scholar
  84. Marti, O., & Armario, A. (1997). Influence of regularity of exposure to chronic stress on the pattern of habituation of pituitary-adrenal hormones, prolactin and glucose. Stress, 1, 179-189.CrossRefPubMedGoogle Scholar
  85. Mason, J. T., McClure, C. J. W., & Barber, J. R. (2016). Anthropogenic noise impairs owl hunting behavior. Biological Conservation, 199, 29-32.CrossRefGoogle Scholar
  86. Mason, M. J. (2016). Structure and function of the mammalian middle ear. II: Inferring function from structure. Journal of Anatomy, 228, 284-299.CrossRefPubMedGoogle Scholar
  87. McComb, K., Shannon, G., Sayialel, K. N., & Moss, C. (2014). Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proceedings of the National Academy of Sciences of the United States of America, 111, 5433-5438.PubMedCentralCrossRefPubMedGoogle Scholar
  88. McConnell, J. C. (1990). Acoustic structure and receiver response in domestic dogs (Canis familiaris). Animal Behaviour, 39, 897-904.CrossRefGoogle Scholar
  89. McGee, J., & Walsh, E. J. (2015). Cochlear transduction and the molecular basis of peripheral auditory pathology. In P. W. Flint, B. H. Haughey, V. J. Lund, J. Niparko, M. A. Richardson, K. T. Robbins, & J. R. Thomas (Eds.), Cummings Otolaryngology Head and Neck Surgery, 6th ed. (pp. 2234-2274). Philadelphia: Mosby, Elsevier, Inc.Google Scholar
  90. McLellan, B. N., & Shackleton, D. M. (1988). Grizzly bears and resource extraction industries: Effects of roads on behavior, habitat use and demography. Journal of Applied Ecology, 25, 451-460.CrossRefGoogle Scholar
  91. Mennitt, D., Fristrup, K., Sherrill, K., & Nelson, L. (2013). Mapping sound pressure levels on continental scales using a geospatial sound model. Proceedings of 42nd International Congress and Exposition on Noise Control Engineering 2013 (INTER-NOISE 2013): Noise Control for Quality of Life, Innsbruck, Austria, September 15-18, 2013, pp. 41-51.Google Scholar
  92. Mennitt, D. J., Fristrup, K. M., & Nelson, L. (2015). A spatially explicit estimate of environmental noise exposure in the contiguous United States. The Journal of the Acoustical Society of America, 137, 2339-2340.CrossRefGoogle Scholar
  93. Merchan, C. I., Diaz-Balteiro, L., & Soliño, M. (2014). Noise pollution in national parks: Soundscape and economic valuation. Landscape and Urban Planning, 123, 1-9.CrossRefGoogle Scholar
  94. Michaud, D. S., Miller, S. M., Ferrarotto, C., Keith, S. E., Bowers, W. J., Kumarathsan, P., Marro, L., & Trivedi, A. (2005). Exposure to chronic noise and fractionated X-ray radiation elicits biochemical changes and disrupts body weight gain in rats. International Journal of Radiation Biology, 81, 299-307.CrossRefPubMedGoogle Scholar
  95. Morris-Drake, A., Kern, J. M., & Radford, A. N. (2016). Cross-modal impacts of anthropogenic noise on information use. Current Biology, 26, R903-R912.CrossRefGoogle Scholar
  96. Neff, W. D., & Hind, J. E. (1955). Auditory thresholds of the cat. The Journal of the Acoustical Society of America, 27, 480-483.CrossRefGoogle Scholar
  97. Niemeyer, W. (1971). Relations between the discomfort level and the reflex threshold of the middle ear muscles. Audiology, 10, 172-176.CrossRefPubMedGoogle Scholar
  98. Nonaka, S., Takahashi, R., Enomoto, K., Katada, A., & Unno, T. (1997). Lombard reflex during PAG-induced vocalization in decerebrate cats. Neuroscience Research, 29, 283-289.CrossRefPubMedGoogle Scholar
  99. Oliveira, M. J., Pereira, A. S., Castelo Branco, N. A., Grande, N. R., & Aguas, A. P. (2001). In utero and postnatal exposure of Wistar rats to low frequency/high intensity noise depletes the tracheal epithelium of ciliated cells. Lung, 179, 225-232.CrossRefPubMedGoogle Scholar
  100. Otten, W., Kanitz, E., Puppe, B., Tuchscherer, M., Brüssow, K. P., Nürnberg, G., & Stabenow, B. (2004). Acute and long term effects of chronic intermittent noise stress on hypothalamic-pituitary-adrenocortical and sympatho-adrenomedullary axis in pigs. Animal Science, 78, 271-283.Google Scholar
  101. Owen, M. A., Swaisgood, R. R., Czekala, N. M., Steinman, K., & Lindburg, D. G. (2004). Monitoring stress in captive giant pandas (Ailuropoda melanoleuca), behavioral and hormonal responses to ambient noise. Zoo Biology, 23, 147-164.CrossRefGoogle Scholar
  102. Owen, M. A., Hall, S., Bryant, L., & Swaisgood, R. R. (2014). The influence of ambient noise on maternal behavior in a Bornean sun bear (Helarctos malayanus euryspilus). Zoo Biology, 33, 49-53.CrossRefPubMedGoogle Scholar
  103. Perrot, X., & Collet, L. (2014). Function and plasticity of the medial olivocochlear system in musicians: A review. Hearing Research, 308, 27-40.CrossRefPubMedGoogle Scholar
  104. Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L., & Krause, B. L. (2011). What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 26, 1213-1232.CrossRefGoogle Scholar
  105. Powell, D. M., Carlstead, K., Tarou, L. R., Brown, J. L., & Monfort, S. L. (2006). Effects of construction noise on behavior and cortisol levels in a pair of captive giant pandas (Ailuropoda melanoleuca). Zoo Biology, 25, 391-408.CrossRefGoogle Scholar
  106. Pujol, R., & Puel, J. L. (1999). Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings. Annals of the New York Academy of Sciences, 884, 249-254.CrossRefPubMedGoogle Scholar
  107. Quadros, S., Goulart, V. D. L., Passos, L., Vecci, M. A. M., & Young, R. J. (2014). Zoo visitor effect on mammal behaviour: Does noise matter? Applied Animal Behaviour Science, 156, 78-84.CrossRefGoogle Scholar
  108. Rabanal, L. I., Kuehl, H. S., Mundry, R., Robbins, M. M., & Boesch, C. (2010). Oil prospecting and its impact on large rainforest mammals in Loango National Park, Gabon. Biological Conservation, 143, 1017-1024.CrossRefGoogle Scholar
  109. Rabat, A. (2007). Extra-auditory effects of noise in laboratory animals: The relationship between noise and sleep. Journal of the American Association of Laboratory Animal Science, 46, 35-41.Google Scholar
  110. Rabat, A., Bouyer, J. J., Aran, J. M., Courtiere, A., Mayo, W., & Le Moal, M. (2004). Deleterious effects of an environmental noise on sleep and contribution of its physical components in a rat model. Brain Research, 1009, 88-97.CrossRefPubMedGoogle Scholar
  111. Rabat, A., Bouyer, J. J., Aran, J. M., Le Moal, M., & Mayo, W. (2005). Chronic exposure to an environmental noise permanently disturbs sleep in rats: Inter-individual vulnerability. Brain Research, 1059, 72-82.CrossRefPubMedGoogle Scholar
  112. Rabat, A., Bouyer, J. J., George, O., Le Moal, M., & Mayo, W. (2006). Chronic exposure of rats to noise: Relationship between long-term memory deficits and slow wave sleep disturbances. Behavioural Brain Research, 171, 303-312.CrossRefPubMedGoogle Scholar
  113. Rabin, L. A., Coss, R. C., & Owings, D. H. (2006). The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biological Conservation, 131, 410-420.CrossRefGoogle Scholar
  114. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13, 87-103.CrossRefPubMedGoogle Scholar
  115. Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305-1352.PubMedCentralCrossRefPubMedGoogle Scholar
  116. Rondinini, C., & Doncaster, C. (2002). Roads as barriers to movement for hedgehogs. Functional Ecology, 16, 504-509.CrossRefGoogle Scholar
  117. Rosowski, J. J. (1991). The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. The Journal of the Acoustical Society of America, 90, 124-135.CrossRefPubMedGoogle Scholar
  118. Rosowski, J. J. (2013). Comparative middle ear structure and function in vertebrates. In S. Puria, R. R. Fay, & A. N. Popper (Eds.), The Middle Ear (pp. 31-65). New York: Springer-Verlag.CrossRefGoogle Scholar
  119. Schäffer, D., Marquardt, V., Marx, G., & von Borell, E. (2001). Noise in animal housing: A review with emphasis on pig housing. Deutsche Tierärztliche Wochenschrift, 108, 60-66.PubMedGoogle Scholar
  120. Schaub, A., Ostwald, J., & Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211, 3174-3180.CrossRefPubMedGoogle Scholar
  121. Senzaki, M., Yamaura, Y, Francis, C. D., & Nakamura, F. (2016). Traffic noise reduces foraging efficiency in wild owls. Scientific Reports, 6, 30602.PubMedCentralCrossRefPubMedGoogle Scholar
  122. Shannon, G., Angeloni, L. M., Wittemyer, G., Fristrup, K. M., & Crooks, K. R. (2014). Road traffic noise modifies behaviour of a keystone species. Animal Behaviour, 94, 135-141.CrossRefGoogle Scholar
  123. Shi, X. (2016). Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hearing Research, 338, 52-63.PubMedCentralCrossRefPubMedGoogle Scholar
  124. Shirley, M. D. F., Armitage, V. L., Barden, T. L., Gough, M., Lurz, P. W. W., Oatway, D. E., & Rushton, S. P. (2001). Assessing the impact of a music festival on the emergence behaviour of a breeding colony of Daubenton’s bats (Myotis daubentonii). Journal of Zoology, 254, 367-373.CrossRefGoogle Scholar
  125. Siemers, B. M., & Schaub, A. (2011). Hunting at the highway: Traffic noise reduces foraging efficiency in acoustic predators. Proceedings of the Royal Society B: Biological Sciences, 278, 1646-1652.CrossRefPubMedGoogle Scholar
  126. Simmons, A. M., Hom, K. N., Warnecke, M., & Simmons, J. A. (2016). Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). Journal of Experimental Biology, 209, 1031-1040.CrossRefGoogle Scholar
  127. Singh, P., Price, T. D., & Hartley, I. (2015). Causes of the latitudinal gradient in birdsong complexity assessed from geographical variation within two Himalayan warbler species. Ibis, 157, 511-527.CrossRefGoogle Scholar
  128. Sinnot, J. M., Stebbins, W. C., & Moody, D. B. (1975). Regulation of voice amplitude by the monkey. The Journal of the Acoustical Society of America, 58, 412-414.CrossRefGoogle Scholar
  129. Sivian, L. J., & White, S. D. (1933). On minimum audible sound fields. The Journal of the Acoustical Society of America, 4, 288-321.CrossRefGoogle Scholar
  130. Slabbekoorn, H., & Ripmeester, E. A. P. (2008). Birdsong and anthropogenic noise: Implications and applications for conservation. Molecular Ecology, 17, 72-83.CrossRefPubMedGoogle Scholar
  131. Spoendlin, H., & Brun, J. P. (1973). Relation of structural damage to exposure time and intensity in acoustic trauma. Acta Otolaryngology, 75, 220-226.CrossRefGoogle Scholar
  132. Stansfeld, S. A., & Matheson, M. P. (2003). Noise pollution: Non-auditory effects on health. British Medical Bulletin, 68, 243-257.CrossRefPubMedGoogle Scholar
  133. Stephens, D. B., Bailey, K. J., Sharman, D. F., & Ingram, D. L. (1985). An analysis of some behavioural effects of the vibration and noise components of transport in pigs. Quarterly Journal of Experimental Physiology, 70, 211-217.CrossRefPubMedGoogle Scholar
  134. Syka, J., Popelář, J., Druga, R., & Vlkova, A. (1988). Descending central auditory pathway— Structure and function. In J. Syka & R. B. Masterton (Eds.), Auditory Pathway (pp. 279-292). Boston: Springer.CrossRefGoogle Scholar
  135. Talling, J. C., Waran, N. K., Wathes, C. M., & Lines, J. A. (1996). Behavioural and physiological responses of pigs to sound. Applied Animal Behaviour Science, 48, 187-202.CrossRefGoogle Scholar
  136. Talling, J. C., Waran, N. K., Wathes, C. M., & Lines, J. A. (1998). Sound avoidance by domestic pigs depends upon characteristics of the signal. Applied Animal Behaviour Science, 58, 255-266.CrossRefGoogle Scholar
  137. Tamura, H., Ohgami, N., Yajima, I., Iida, M., Ohgami, K., Fujii, N., Itabe, H., Kusudo, T., Yamashita, H., & Kato, M. (2012). Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice. PLoS ONE, 7, e39807.PubMedCentralCrossRefPubMedGoogle Scholar
  138. Uran, S. L., Caceres, L. G., & Guelman, L. R. (2010). Effects of loud noise on hippocampal and cerebellar-related behaviors. Role of oxidative state. Brain Research, 1361, 102-114.CrossRefPubMedGoogle Scholar
  139. Uran, S. L., Aon-Bertolino, M. L., Caceres, L. G., Capani, F., & Guelman, L. R. (2012). Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels. Brain Research, 1471, 1-12.CrossRefPubMedGoogle Scholar
  140. Walther, F. R. (1969). Flight behaviour and avoidance of predators in Thomson’s gazelle (Gazella thomsoni). Behaviour, 34, 184-219.CrossRefGoogle Scholar
  141. Wang, Y., Hirose, K., & Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. Journal of the Association for Research in Otolaryngology, 3, 248-268.PubMedCentralCrossRefPubMedGoogle Scholar
  142. Warr, W. B., & Guinan, J. J. (1979). Efferent innervation of the organ of Corti: Two separate systems. Brain Research, 173, 152-155.CrossRefPubMedGoogle Scholar
  143. Waynert, D. F., Stookey, J. M., Schwartzkopf-Genwein, K. S., Watts, J. M., & Waltz, C. S. (1999). Response of beef cattle to noise during handling. Applied Animal Behaviour Science, 62, 27-42.CrossRefGoogle Scholar
  144. Weeks, C. A., Brown, S. N., Lane, S., Haesman, L., Benson, T., & Warriss, P. D. (2009). Noise levels in lairages for cattle, sheep and pigs in abattoirs in England and Wales. Veterinary Record, 165, 308-314.CrossRefPubMedGoogle Scholar
  145. Weir, J. T., Wheatcroft, D. J., & Price, T. D. (2012). The role of ecological constraint in driving the evolution of avian song frequency across a latitudinal gradient. Evolution, 66, 2773-2783.CrossRefPubMedGoogle Scholar
  146. Weisenberger, M. E., Krausman, P. R., Wallace, M. C., DeYoung, D. W., & Maughan, O. E. (1996). Effects of simulated jet aircraft noise on heart rates and behavior of desert ungulates. Journal of Wildlife Management, 60, 52-61.CrossRefGoogle Scholar
  147. Wilson, D. E., & Reeder, D. A. M. (Eds.). (2005). Mammal Species of the World. A Taxonomic and Geographic Reference, 3rd ed. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  148. Winslow, R. L., & Sachs, M. B. (1988). Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hearing Research, 35, 165-189.CrossRefPubMedGoogle Scholar
  149. Wrege, P. H., Rowland, E. D., Thompson, B. G., & Batruch, N. (2010). Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conservation Biology, 24, 1578-1585.CrossRefPubMedGoogle Scholar
  150. Wysocki, A. B. (1996). The effect of intermittent noise on wound healing. Advances in Skin and Wound Care, 9, 35-39.Google Scholar
  151. Zheng, X. Y., Henderson, D., McFadden S. L., & Hu, B. H. (1997). The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Hearing Research, 104, 191-203.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hans Slabbekoorn
    • 1
    Email author
  • JoAnn McGee
    • 2
  • Edward J. Walsh
    • 2
  1. 1.Faculty of Science, Institute of Biology Leiden (IBL)Leiden UniversityLeidenThe Netherlands
  2. 2.Developmental Auditory Physiology LaboratoryBoys Town National Research HospitalOmahaUSA

Personalised recommendations