Advertisement

Impact of Man-Made Sound on Birds and Their Songs

  • Wouter HalfwerkEmail author
  • Bernard Lohr
  • Hans Slabbekoorn
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)

Abstract

Vocalizing birds are ubiquitous and often prominent in areas that are reached by noisy human activities. Birds have therefore been studied for the effects of man-made sound on song production and perception, physiological stress, distribution range, breeding density, and reproductive success. There are examples of birds that sing louder, higher, and longer when ambient-noise levels are elevated due to human activities. This may lead to perceptual advantages through masking release, although song modifications may also lead to a functional compromise. Fitness benefits of noise-dependent modifications have not been proven yet. Masking effects are reported for outdoor and indoor studies, but data on physiological consequences are not widespread yet. There are also still only few experimental studies on more long-term consequences of man-made sound on development, maturation, and fitness. Observational data on species distributions and densities show that there are birds that persist at noisy sites but also that artificially elevated noise levels can have detrimental consequences for particular species. Birds in noisy localities may move away or stay and fare less well. Furthermore, the effects of noise pollution can go beyond single species because all species may be more or less negatively affected, but the effect on one species may also positively or negatively affect another. The variety in sensitivity among species and the diversity in impact and counterstrategies have made birds both cases of concern and popular model species for fundamental and applied research.

Keywords

Avian song Coping strategy Experimental exposure Fitness consequences Lombard effect Pitch shift Signal interference Signal-to-noise ratio Vocal plasticity 

Notes

Compliance with Ethics Requirements

Wouter Halfwerk declares that he has no conflict of interest.

Bernard Lohr declares that he has no conflict of interest.

Hans Slabbekoorn declares that he has no conflict of interest.

References

  1. Angelier, F., Meillère, A., Grace, J. K., Trouvé, C., & Brischoux, F. (2015). No evidence for an effect of traffic noise on the development of the corticosterone stress response in an urban exploiter. General and Comparative Endocrinology, 232, 43–50.CrossRefPubMedGoogle Scholar
  2. Arroyo-Solis, A., Castillo, J. M., Figueroa, E., Lopez-Sanchez, J. L., & Slabbekoorn, H. (2013). Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. Journal of Avian Biology, 44, 288–296.CrossRefGoogle Scholar
  3. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2009). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180–189.CrossRefGoogle Scholar
  4. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383, 1325–1332.CrossRefPubMedGoogle Scholar
  5. Bayne, E. M., Habib, L., & Boutin, S. (2008). Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology, 22, 1186–1193.CrossRefPubMedGoogle Scholar
  6. Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bergman, G. (1982). Die Veränderung der Gesangmelodie der Kohlmeise Parus major in Finnland und Schweden (The change of song pattern of the great tit Parus major in Finland and Sweden). Ornis Fennica, 57, 97–111.Google Scholar
  8. Bermúdez-Cuamatzin, E., Ríos-Chelén, A. A., Gil, D., & Garcia, C. M. (2009). Strategies of song adaptation to urban noise in the house finch: Syllable pitch plasticity or differential syllable use? Behaviour, 146, 1269–1286.CrossRefGoogle Scholar
  9. Bermudez-Cuamatzin, E., Rios-Chelen, A. A., Gil, D., & Garcia, C. M. (2010). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 7, 36–38.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Blickley, J. L., Word, K. R., Krakauer, A. H., Phillips, J. L., Sells, S. N., Taff, C. C., Wingfield, J. C., & Patricelli, G. L. (2012a). Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLoS ONE, 7(11), e50462.  https://doi.org/10.1371/journal.pone.0050462.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Blickley, J. L., Blackwood, D., & Patricelli, G. L. (2012b). Experimental evidence for the effects of chronic anthropogenic noise on abundance of greater sage-grouse at leks. Conservation Biology, 26, 461–471.CrossRefPubMedGoogle Scholar
  12. Bormpoudakis, D., Sueur, J., & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landscape Ecology, 28, 495–506.CrossRefGoogle Scholar
  13. Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244–249.CrossRefPubMedGoogle Scholar
  14. Brenowitz, E. A. (1982). The active space of red-winged blackbird song. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 147, 511–522.CrossRefGoogle Scholar
  15. Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73, 434–440.CrossRefGoogle Scholar
  16. Brumm, H., & Todt, D. (2002). Noise-dependent song amplitude regulation in a territorial songbird. Animal Behaviour, 63, 891–897.CrossRefGoogle Scholar
  17. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. In P. J. B. Slater, C. T. Snowdon, T. J. Roper, H. J. Brockmann, & M. Naguib (Eds.), Advances in the Study of Behavior (pp. 151–209). San Diego, CA: Academic Press.Google Scholar
  18. Cardoso, G. C., & Price, T. D. (2010). Community convergence in bird song. Evolutionary Ecology, 24, 447–461.CrossRefGoogle Scholar
  19. Cardoso, G. C., & Atwell, J. W. (2011). Directional cultural change by modification and replacement of memes. Evolution, 65, 295–300.CrossRefPubMedGoogle Scholar
  20. Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  21. Chan, A. A. Y.-H., & Blumstein, D. T. (2011). Attention, noise, and implications for wildlife conservation and management. Applied Animal Behaviour Science, 131, 1–7.CrossRefGoogle Scholar
  22. Chan, A. A. Y.-H., Giraldo-Perez, P., Smith, S., & Blumstein, D. T. (2010). Anthropogenic noise affects risk assessment and attention: The distracted prey hypothesis. Biology Letters, 6, 458–461.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Cody, M. L., & Brown, J. H. (1969). Song asynchrony in neighbouring bird species. Nature, 222(5195), 778–780.CrossRefGoogle Scholar
  24. Collins, S. (2004). Vocal fighting and flirting: The functions of birdsong. In P. Marler & H. Slabbekoorn (Eds.), Nature’s Music: The Science of Birdsong (pp. 39–79). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
  25. Crino, O. L., Johnson, E. E., Blickley, J. L., Patricelli, G. L., & Breuner, C. W. (2013). Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. Journal of Experimental Biology, 216, 2055–2062.CrossRefPubMedGoogle Scholar
  26. Cuthill, I. C., & Macdonald, W. A. (1990). Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behavioral Ecology and Sociobiology, 26(3), 209–216.CrossRefGoogle Scholar
  27. des Aunay, G. H., Slabbekoorn, H., Nagle, L., Passas, F., Nicolas, P., & Draganoiu, T. I. (2014). Urban noise undermines female sexual preferences for low-frequency songs in domestic canaries. Animal Behaviour, 87, 67–75.CrossRefGoogle Scholar
  28. Dent, M. L., Larsen, O. N., & Dooling, R. J. (1997). Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behavioral Neuroscience, 111, 590–598.CrossRefPubMedGoogle Scholar
  29. Dent, M. L., McClaine, E. M., Best, V., Ozmeral, E., Narayan, R., Gallun, F. J., Sen, K., & Shinn-Cunningham, B. G. (2009). Spatial unmasking of birdsong in zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). Journal of Comparative Psychology, 123, 357–367.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089.CrossRefPubMedGoogle Scholar
  31. Dooling, R. J., & Okanoya, K. (1995). The method of constant stimuli in testing auditory sensitivity in small birds. In G. M. Klump, R. J. Dooling, R. R. Fay, & W. C. Stebbins (Eds.), Methods in Comparative Psychoacoustics (pp. 161–169). Basel: Birkhäuser.CrossRefGoogle Scholar
  32. Dooling, R. J., & Blumenrath, S. H. (2013). Avian sound perception in noise. In H. Brumm (Ed.), Animal Communication and Noise (pp. 229–250). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  33. Dooling, R. J., Lohr, B., & Dent, M. L. (2000). Hearing in birds and reptiles. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing in Birds and Reptiles (pp. 308–359). New York: Springer-Verlag.CrossRefGoogle Scholar
  34. Dubois, A., & Martens, J. (1984). A case of possible vocal convergence between frogs and a bird in Himalayan torrents. Journal für Ornithologie, 125, 455–463.CrossRefGoogle Scholar
  35. Elemans, C., Rasmussen, J. H., Herbst, C. T., Düring, D. N., Zollinger, S. A., Brumm, H., Srivastava, K., Svane, N., Ding, M., & Larsen, O. N. (2015). Universal mechanisms of sound production and control in birds and mammals. Nature Communications, 6, 8978.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Fahrig, L., & Rytwinski, T. (2009). Effects of roads on animal abundance: An empirical review and synthesis. Ecology and Society, 14(1), 21.CrossRefGoogle Scholar
  37. Fay, R. R. (1988). Comparative psychoacoustics. Hearing Research, 34(3), 295–305.CrossRefPubMedGoogle Scholar
  38. Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Ultrasonic communication in frogs. Nature, 440, 333–336.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Francis, C. D. (2015). Vocal traits and diet explain avian sensitivities to anthropogenic noise. Global Change Biology, 21, 1809–1820.CrossRefPubMedGoogle Scholar
  40. Francis, C. D., & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11, 305–313.CrossRefGoogle Scholar
  41. Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Cumulative consequences of noise pollution: Noise changes avian communities and species interactions. Current Biology, 19, 1415–1419.CrossRefPubMedGoogle Scholar
  42. Francis, C. D., Ortega, C. P., & Cruz, A. (2011). Noise pollution filters bird communities based on vocal frequency. PLoS ONE, 6, e27052.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Francis, C. D., Kleist, N. J., Ortega, C. P., & Cruz, A. (2012). Noise pollution alters ecological services: Enhanced pollination and disrupted seed dispersal. Proceedings of the Royal Society B: Biological Sciences, 279, 2727–2735.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fuller, R. A., Warren, P. H., & Gaston, K. J. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters, 3, 368–370.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394–407.CrossRefGoogle Scholar
  46. Gil, D., Honarmand, M., Pascual, J., Pérez-Mena, E., & Garcia, C. M. (2014). Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behavioral Ecology, 26, 435–443.CrossRefGoogle Scholar
  47. Gleich, O., & Manley, G. A. (2000). The hearing organ of birds and crocodilian. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing in Birds and Reptiles (pp. 70–138). New York: Springer-Verlag.CrossRefGoogle Scholar
  48. Goodwin, S. E., & Shriver, W. G. (2011). Effects of traffic noise on occupancy patterns of forest birds. Conservation Biology, 25, 406–411.PubMedGoogle Scholar
  49. Habib, L., Bayne, E. M., & Boutin, S. (2007). Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. Journal of Applied Ecology, 44, 176–184.CrossRefGoogle Scholar
  50. Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78, 1301–1307.CrossRefGoogle Scholar
  51. Halfwerk, W., & Slabbekoorn, H. (2015). Pollution going multimodal: The complex impact of the human-altered sensory environment on animal perception and performance. Biology Letters, 11, e20141051.CrossRefGoogle Scholar
  52. Halfwerk, W., Bot, S., Buikx, J., van der Velde, M., Komdeur, J., ten Cate, C., & Slabbekoorn, H. (2011a). Low songs lose potency in urban noise conditions. Proceedings of the National Academy of Sciences of the United States of America, 108, 14549–14554.Google Scholar
  53. Halfwerk, W., Holleman, L. J. M., Lessells, C. M., & Slabbekoorn, H. (2011b). Negative impact of traffic noise on avian reproductive success. Journal of Applied Ecology, 48, 210–219.CrossRefGoogle Scholar
  54. Halfwerk, W., Bot, S., & Slabbekoorn, H. (2012). Male great tit song perch selection in response to noise-dependent female feedback. Functional Ecology, 26, 1339–1347.CrossRefGoogle Scholar
  55. Halfwerk, W., Dingle, C., Brinkhuizen, D. M., Poelstra, J. W., Komdeur, J., & Slabbekoorn, H. (2016a). Sharp acoustic boundaries across an altitudinal avian hybrid zone despite asymmetric introgression. Journal of Evolutionary Biology, 29, 1356–1367.CrossRefPubMedGoogle Scholar
  56. Halfwerk, W., Lea, A. M., Guerra, M., Page, R. A., & Ryan, M. J. (2016b). Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology, 27, 669–676.CrossRefGoogle Scholar
  57. Halfwerk, W., Both, C., & Slabbekoorn, H. (2016c). Long-term nestbox noise experiments reveal an impact on nest-site selection but not on reproduction. Behavioral Ecology, 27, 1592–1600.CrossRefGoogle Scholar
  58. Hall, J. W., Haggard, M. P., & Fernandes, M. A. (1984). Detection in noise by spectro-temporal pattern analysis. The Journal of the Acoustical Society of America, 76, 50–56.CrossRefPubMedGoogle Scholar
  59. Hall, M. L. (2009). A review of vocal duetting in birds. Advances in the Study of Behavior, 40, 67–121.CrossRefGoogle Scholar
  60. Hamao, S., Watanabe, M., & Mori, Y. (2011). Urban noise and male density affect songs in the great tit Parus major. Ethology Ecology & Evolution, 23, 111–119.CrossRefGoogle Scholar
  61. Hanna, D., Blouin-Demers, G., Wilson, D. R., & Mennill, D. J. (2011). Anthropogenic noise affects song structure in red-winged blackbirds (Agelaius phoeniceus). Journal of Experimental Biology, 214, 3549–3556.CrossRefPubMedGoogle Scholar
  62. Hasselquist, D., Bensch, S., & von Schantz, T. (1996). Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature, 381, 229–232.CrossRefGoogle Scholar
  63. Hilton, S. C., & Krebs, J. K. (1990). Spatial memory of four species of Parus: Performance in an open-field analogue of a radial maze. The Quarterly Journal of Experimental Psychology, 42, 345–368.Google Scholar
  64. Hu, Y., & Cardoso, G. C. (2009). Which birds adjust the frequency of vocalizations in urban noise? Animal Behaviour, 79, 863–867.CrossRefGoogle Scholar
  65. Hulse, S. H., MacDougall-Shackleton, S. A., & Wisniewski, A. B. (1997). Auditory scene analysis by songbirds: Stream segregation of birdsong by European starlings (Sturnus vulgaris). Journal of Comparative Psychology, 111, 3–13.CrossRefPubMedGoogle Scholar
  66. Jensen, K. K. (2007). Comodulation detection differences in the hooded crow (Corvus corone cornix), with direct comparison to human subjects. The Journal of the Acoustical Society of America, 121, 1783–1789.CrossRefPubMedGoogle Scholar
  67. Jouventin, P., Aubin, T., & Lengagne, T. (1999). Finding a parent in a king penguin colony: The acoustic system of individual recognition. Animal Behaviour, 57, 1175–1183.CrossRefPubMedGoogle Scholar
  68. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14(10), 1052–1061.CrossRefPubMedGoogle Scholar
  69. Kight, C. R., Saha, M. S., & Swaddle, J. P. (2012). Anthropogenic noise is associated with reductions in the productivity of breeding Eastern Bluebirds (Sialia sialis). Ecological Applications, 22(7), 1989–1996.CrossRefPubMedGoogle Scholar
  70. Klump, G. M. (1996). Bird communication in the noisy world. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and Evolution of Acoustic Communication in Birds (pp. 321–338). Ithaca, NY: Cornell University Press.Google Scholar
  71. Klump, G. M., & Langemann, U. (1995). Comodulation masking release in a songbird. Hearing Research, 87, 157–164.CrossRefPubMedGoogle Scholar
  72. Knudsen, D. P., & Gentner, T. Q. (2010). Mechanisms of song perception in oscine birds. Brain and Language, 115, 59–68.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 133, 13–21.CrossRefGoogle Scholar
  74. Konishi, M. (1973). How the owl tracks its prey: Experiments with trained barn owls reveal how their acute sense of hearing enables them to catch prey in the dark. American Scientist, 61(4), 414–424.Google Scholar
  75. Kroodsma, D. E. (2004). Diversity and plasticity of bird song. In P. Marler & H. Slabbekoorn (Eds.), Nature’s Music: The Science of Birdsong (pp. 108–130). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
  76. Kroodsma, D. E., & Byers, B. E. (1991). The function(s) of bird song. American Zoologist, 31, 318–328.CrossRefGoogle Scholar
  77. Kroodsma, D. E., & Miller, E. H. (1996). Ecology and Evolution of Acoustic Communication in Birds. Ithaca, NY: Cornell University Press.Google Scholar
  78. Lachlan, R. F., Verzijden, M. N., Bernard, C. S., Jonker, P.-P., Koese, B., Jaarsma, S., Spoor, W., Slater, P. J., & ten Cate, C. (2013). The progressive loss of syntactical structure in bird song along an island colonization chain. Current Biology, 23, 1896–1901.CrossRefPubMedGoogle Scholar
  79. Laiolo, P., & Tella, J. L. (2005). Habitat fragmentation affects culture transmission: Patterns of song matching in Dupont’s lark. Journal of Applied Ecology, 42, 1183–1193.CrossRefGoogle Scholar
  80. Langemann, U., & Klump, G. M. (2007). Detecting modulated signals in modulated noise: (1) Behavioural auditory thresholds in a songbird. European Journal of Neuroscience, 26, 1969–1978.CrossRefPubMedGoogle Scholar
  81. Langemann, U., Gauger, B., & Klump, G. M. (1998). Auditory sensitivity in the great tit: Perception of signals in the presence and absence of noise. Animal Behaviour, 56, 763–769.CrossRefPubMedGoogle Scholar
  82. Lazerte, S. E., Slabbekoorn, H., & Otter, K. A. (2016). Learning to cope: Vocal adjustment to urban noise is correlated with prior experience in black-capped chickadees. Proceedings of the Royal Society B: Biological Sciences, 283(1833), 20161058.CrossRefPubMedGoogle Scholar
  83. Leonard, M. L., & Horn, A. G. (2005). Ambient noise and the design of begging signals. Proceedings of the Royal Society B: Biological Sciences, 272, 651–656.CrossRefPubMedGoogle Scholar
  84. Leonard, M. L., & Horn, A. G. (2012). Ambient noise increases missed detections in nestling birds. Biology Letters, 8, 530–532.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Lohr, B., & Dooling, R. J. (1998). Detection of changes in timbre and harmonicity in complex sounds by zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). Journal of Comparative Psychology, 112(1), 36–47.CrossRefPubMedGoogle Scholar
  86. Lohr, B., Wright, T. F., & Dooling, R. J. (2003). Detection and discrimination of natural calls in masking noise by birds: Estimating the active space of a signal. Animal Behaviour, 65, 763–777.CrossRefGoogle Scholar
  87. Lucass, C., Eens, M., & Müller, W. (2016). When ambient noise impairs parent-offspring communication. Environmental Pollution, 212, 592–597.CrossRefPubMedGoogle Scholar
  88. Luther, D., & Baptista, L. (2010). Urban noise and the cultural evolution of bird songs. Proceedings of the Royal Society B: Biological Sciences, 277, 469–473.CrossRefPubMedGoogle Scholar
  89. Luther, D., & Magnotti, J. (2014). Can animals detect differences in vocalizations adjusted for anthropogenic noise? Animal Behaviour, 92, 111–116.CrossRefGoogle Scholar
  90. Mace, R. (1987). The dawn chorus in the great tit Parus major is directly related to female fertility. Nature, 330, 745–746.CrossRefGoogle Scholar
  91. Marler, P. (1970). Birdsong and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species conform, including man. American Scientist, 58, 669–673.PubMedGoogle Scholar
  92. Marler, P., & Slabbekoorn, H. (2004). Nature’s Music: The Science of Birdsong. San Diego, CA: Elsevier Academic Press.Google Scholar
  93. Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. Behavioral Ecology and Sociobiology, 2, 271–290.CrossRefGoogle Scholar
  94. Mason, J. T., McClure, C. J. W., & Barber, J. R. (2016). Anthropogenic noise impairs owl hunting behavior. Biological Conservation, 199, 29–32.CrossRefGoogle Scholar
  95. Mathevon, N., Aubin, T., & Dabelsteen, T. (1996). Song degradation during propagation: Importance of song post for the wren Troglodytes troglodytes. Ethology, 102, 397–412.CrossRefGoogle Scholar
  96. McClure, C. J., Ware, H. E., Carlisle, J., Kaltenecker, G., & Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proceedings of the Royal Society B:Biological Sciences, 280, 20132290.PubMedCentralCrossRefPubMedGoogle Scholar
  97. McGregor, P. K., Krebs, J. R., & Perrins, C. M. (1981). Song repertoires and lifetime reproductive success in the great tit (Parus major). American Naturalist, 118, 149–159.CrossRefGoogle Scholar
  98. McLaughlin, K. E., & Kunc, H. P. (2013). Experimentally increased noise levels change spatial and singing behaviour. Biology Letters, 9, 20120771.  https://doi.org/10.1098/rsbl.2012.0771.CrossRefPubMedCentralPubMedGoogle Scholar
  99. Meillère, A., Brischoux, F., & Angelier, F. (2015). Impact of chronic noise exposure on antipredator behavior: An experiment in breeding house sparrows. Behavioral Ecology, 26, 569–577.CrossRefGoogle Scholar
  100. Miller, G. A. (1951). Language and Communication. New York: McGraw-Hill Book Company.CrossRefGoogle Scholar
  101. Moiron, M., González-Lagos, C., Slabbekoorn, H., & Sol, D. (2015). Singing in the city: High song frequencies are no guarantee for urban success in birds. Behavioral Ecology, 26, 843–850.CrossRefGoogle Scholar
  102. Moore, B. C., Glasberg, B. R., & Baer, T. (1997). A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45, 224–240.Google Scholar
  103. Naguib, M., van Oers, K., Braakhuis, A., Griffioen, M., de Goede, P., & Waas, J. R. (2013). Noise annoys: Effects of noise on breeding great tits depend on personality but not on noise characteristics. Animal Behaviour, 85, 949–956.CrossRefGoogle Scholar
  104. Nemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? American Naturalist, 176, 465–475.CrossRefPubMedGoogle Scholar
  105. Noirot, I. C., Brittan-Powell, E. F., & Dooling, R. J. (2011). Masked auditory thresholds in three species of birds, as measured by the auditory brainstem response (L). The Journal of the Acoustical Society of America, 129, 3445–3448.PubMedCentralCrossRefPubMedGoogle Scholar
  106. Odom, K. J., Hall, M. L., Riebel, K., Omland, K. E., & Langmore, N. E. (2014). Female song is widespread and ancestral in songbirds. Nature Communications, 5, e3379.CrossRefGoogle Scholar
  107. Okanoya, K., & Dooling, R. J. (1987). Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. Journal of Comparative Psychology, 101, 7–15.CrossRefPubMedGoogle Scholar
  108. Owens, J. L., Stec, C. L., & O’Hatnick, A. (2012). The effects of extended exposure to traffic noise on parid social and risk-taking behavior. Behavioural Processes, 91, 61–69.CrossRefPubMedGoogle Scholar
  109. Partan, S. R., & Marler, P. (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166, 231–245.CrossRefPubMedGoogle Scholar
  110. Patricelli, G. L., & Blickley, J. L. (2006). Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk, 123, 639–649.CrossRefGoogle Scholar
  111. Payne, R. S. (1971). Acoustic location of prey by barn owls (Tyto alba). Journal of Experimental Biology, 54, 535–573.PubMedGoogle Scholar
  112. Penna, M., Pottstock, H., & Velasquez, N. (2005). Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Animal Behaviour, 70, 639–651.CrossRefGoogle Scholar
  113. Planque, R., & Slabbekoorn, H. (2008). Spectral overlap in songs and temporal avoidance in a Peruvian bird assemblage. Ethology, 114, 262–271.CrossRefGoogle Scholar
  114. Podos, J., Huber, S. K., & Taft, B. (2004). Bird song: The interface of evolution and mechanism. Annual Review of Ecology, Evolution, and Systematics, 35, 55–87.CrossRefGoogle Scholar
  115. Pohl, N. U., Slabbekoorn, H., Klump, G. M., & Langemann, U. (2009). Effects of signal features and environmental noise on signal detection in the great tit, Parus major. Animal Behaviour, 78, 1293–1300.CrossRefGoogle Scholar
  116. Pohl, N. U., Leadbeater, E., Slabbekoorn, H., Klump, G. M., & Langemann, U. (2012). Great tits in urban noise benefit from high frequencies in song detection and discrimination. Animal Behaviour, 83, 711–721.CrossRefGoogle Scholar
  117. Potvin, D. A., & MacDougall-Shackleton, S. A. (2015). Traffic noise affects embryo mortality and nestling growth rates in captive zebra finches. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 323, 722–730.CrossRefGoogle Scholar
  118. Pytte, C. L., Rusch, K. M., & Ficken, M. S. (2003). Regulation of vocal amplitude by the blue-throated hummingbird, Lampornis clemenciae. Animal Behaviour, 66(4), 703–710.CrossRefGoogle Scholar
  119. Quinn, J. L., Whittingham, M. J., Butler, S. J., & Cresswell, W. (2006). Noise, predation risk compensation and vigilance in the chaffinch Fringilla coelebs. Journal of Avian Biology, 37, 601–608.CrossRefGoogle Scholar
  120. Rabinowitz, P. M. (2000). Noise-induced hearing loss. American Family Physician, 61, 2759–2760.Google Scholar
  121. Read, J., Jones, G., & Radford, A. N. (2014). Fitness costs as well as benefits are important when considering responses to anthropogenic noise. Behavioral Ecology, 25, 4–7.  https://doi.org/10.1093/beheco/art102.CrossRefGoogle Scholar
  122. Reijnen, R., & Foppen, R. (1991). Effect of road traffic on the breeding site tenacity of male willow warblers (Phylloscopus trochilus). Journal für Ornithologie, 132, 291–295.CrossRefGoogle Scholar
  123. Reijnen, R., & Foppen, R. (1995). The effects of car traffic on breeding bird populations in woodland. IV. Influence of population size on the reduction of density close to a highway. Journal of Applied Ecology, 32, 481–491.CrossRefGoogle Scholar
  124. Reijnen, R., & Foppen, R. (2006). Impact of road traffic on breeding bird populations. In J. Davenport & J. L. Davenport (Eds.), The Ecology of Transportation: Managing Mobility for the Environment (pp. 255–274). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  125. Rheindt, F. E. (2003). The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? Journal für Ornithologie, 144, 295–306.CrossRefGoogle Scholar
  126. Riebel, K., Hall, M. L., & Langmore, N. E. (2005). Female songbirds still struggling to be heard. Trends in Ecology & Evolution, 20, 419–420.CrossRefGoogle Scholar
  127. Ripmeester, E. A. P., Kok, J. S., van Rijssel, J. C., & Slabbekoorn, H. (2010). Habitat-related birdsong divergence: A multi-level study on the influence of territory density and ambient noise in European blackbirds. Behavioral Ecology and Sociobiology, 64, 409–418.CrossRefPubMedGoogle Scholar
  128. Rivera-Gutierrez, H. F., Matthysen, E., Adriaensen, F., & Slabbekoorn, H. (2010). Repertoire sharing and song similarity between great tit males decline with distance between forest fragments. Ethology, 116, 951–960.CrossRefGoogle Scholar
  129. Rivolta, M. N., & Holley, M. C. (2008). Gene arrays, cell lines, stem cells, and sensory regeneration in mammalian ears. In R. J. Salvi, A. N. Popper, & R. R. Fay (Eds.), Hair Cell Regeneration, Repair, and Protection (pp. 257–307). New York: Springer-Verlag.CrossRefGoogle Scholar
  130. Ronacher, B., & Hoffmann, C. (2003). Influence of amplitude modulated noise on the recognition of communication signals in the grasshopper Chorthippus biguttulus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189, 419–425.CrossRefPubMedGoogle Scholar
  131. Runkle, L. S., Wells, K. D., Robb, C. C., & Lance, S. L. (1994). Individual, nightly, and seasonal variation in calling behavior of the gray tree frog, Hyla versicolor: Implications for energy expenditure. Behavioral Ecology, 5, 318–325.CrossRefGoogle Scholar
  132. Ryals, B. M., Dooling, R. J., Westbrook, E., Dent, M. L., MacKenzie, A., & Larsen, O. N. (1999). Avian species differences in susceptibility to noise exposure. Hearing Research, 131, 71–88.CrossRefPubMedGoogle Scholar
  133. Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.PubMedGoogle Scholar
  134. Scharf, B. (1970). Critical bands. Foundations of Modern Auditory Theory, 1, 157–202.Google Scholar
  135. Schroeder, J., Nakagawa, S., Cleasby, I. R., & Burke, T. (2012). Passerine birds breeding under chronic noise experience reduced fitness. PLoS ONE, 7, e39200.  https://doi.org/10.1371/journal.pone.0039200.CrossRefPubMedCentralPubMedGoogle Scholar
  136. Senzaki, M., Yamaura, Y, Francis, C. D., & Nakamura, F. (2016). Traffic noise reduces foraging efficiency in wild owls. Scientific Reports, 6, 30602.PubMedCentralCrossRefPubMedGoogle Scholar
  137. Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R., & Boonstra, R. (2011). Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia, 166, 869–887.CrossRefPubMedGoogle Scholar
  138. Simpson, S. D., Purser, J., & Radford, A. N. (2014). Anthropogenic noise compromises antipredator behaviour in European eels. Global Change Biology, 21, 586–593.CrossRefPubMedGoogle Scholar
  139. Simpson, S. D., Radford, A. N., Nedelec, S. L., Ferrari, M. C., Chivers, D. P., McCormick, M. I., & Meekan, M. G. (2016). Anthropogenic noise increases fish mortality by predation. Nature Communications, 7, e10544.CrossRefGoogle Scholar
  140. Skiba, R. (2000). Possible rain call selection in the chaffinch (Fringilla coelebs) by noise intensity—An investigation of a hypothesis. Journal für Ornithologie, 141, 160–167.Google Scholar
  141. Slabbekoorn, H. (2004). Habitat-dependent ambient noise: Consistent spectral profiles in two African forest types. The Journal of the Acoustical Society of America, 116, 3727–3733.CrossRefPubMedGoogle Scholar
  142. Slabbekoorn, H. (2013). Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089–1099.CrossRefGoogle Scholar
  143. Slabbekoorn, H. W., & Smith, T. B. (2002a). Bird song, ecology and speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 493–503.CrossRefGoogle Scholar
  144. Slabbekoorn, H., & Smith, T. B. (2002b). Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution, 56(9), 1849–1858.CrossRefPubMedGoogle Scholar
  145. Slabbekoorn, H., & Peet, M. (2003). Ecology: Birds sing at a higher pitch in urban noise. Nature, 424, 267.CrossRefPubMedGoogle Scholar
  146. Slabbekoorn, H., & den Boer-Visser, A. (2006). Cities change the songs of birds. Current Biology, 16, 2326–2331.CrossRefPubMedGoogle Scholar
  147. Slabbekoorn, H., & Ripmeester, E. A. P. (2008). Birdsong and anthropogenic noise: Implications and applications for conservation. Molecular Ecology, 17, 72–83.CrossRefPubMedGoogle Scholar
  148. Slabbekoorn, H., & Halfwerk, W. (2009). Behavioural ecology: Noise annoys at community level. Current Biology, 19, R693-R695.CrossRefPubMedGoogle Scholar
  149. Slabbekoorn, H., Yeh, P., & Hunt, K. (2007). Sound transmission and song divergence: A comparison of urban and forest acoustics. Condor, 109, 67–78.CrossRefGoogle Scholar
  150. Slabbekoorn, H., Yang, X. J., & Halfwerk, W. (2012). Birds and anthropogenic noise: Singing higher may matter (A comment on Nemeth & Brumm, “Birds and anthropogenic noise: Are urban songs adaptive?”). American Naturalist, 180, 142–145.CrossRefPubMedGoogle Scholar
  151. Smith, T. B., Saatchi, S., Graham, C., Slabbekoorn, H., & Spicer, G. (2005). Putting process on the map: Why ecotones are important for preserving biodiversity. In A. Purvis, J. L. Gittleman, & T. Brooks (Eds.), Phylogeny and Conservation (pp. 166–197). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  152. Stanley, C. Q., Walter, M. H., Venkatraman, M. X., & Wilkinson, G. S. (2016). Insect noise avoidance in the dawn chorus of Neotropical birds. Animal Behaviour, 112, 255–265.CrossRefGoogle Scholar
  153. Strasser, E. H., & Heath, J. A. (2013). Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. Journal of Applied Ecology, 50, 912–919.CrossRefGoogle Scholar
  154. Sueur, J., & Sanborn, A. F. (2003). Ambient temperature and sound power of cicada calling songs (Hemiptera: Cicadidae: Tibicina). Physiological Entomology, 28, 340–343.CrossRefGoogle Scholar
  155. Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, e10986.CrossRefGoogle Scholar
  156. Swaddle, J. P., Francis, C. D., Barber, J. R., Cooper, C. B., Kyba, C. C., Dominoni, D. M., Shannon, G., Aschehoug, E., Goodwin, S. E., & Kawahara, A. Y. (2015). A framework to assess evolutionary responses to anthropogenic light and sound. Trends in Ecology & Evolution, 30, 550–560.CrossRefGoogle Scholar
  157. Tempel, D. J., & Gutiérrez, R. (2003). Fecal corticosterone levels in California spotted owls exposed to low-intensity chainsaw sound. Wildlife Society Bulletin, 31, 698–702.Google Scholar
  158. Tempel, D. J., & Gutiérrez, R. (2004). Factors related to fecal corticosterone levels in California spotted owls: Implications for assessing chronic stress. Conservation Biology, 18, 538–547.CrossRefGoogle Scholar
  159. Templeton, C. N., & Greene, E. (2007). Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls. Proceedings of the National Academy of Sciences of the United States of America, 104, 5479–5482.PubMedCentralCrossRefPubMedGoogle Scholar
  160. Templeton, C. N., Zollinger, S. A., & Brumm, H. (2016). Traffic noise drowns out great tit alarm calls. Current Biology, 26, R1167-R1176.CrossRefGoogle Scholar
  161. van der Zande, A. N., ter Keurs, W. J., & van der Weijden, W. J. (1980). The impact of roads on the densities of four bird species in an open field habitat—Evidence of a long-distance effect. Biological Conservation, 18, 299–321.CrossRefGoogle Scholar
  162. Vélez, A., Schwartz, J. J., & Bee, M. A. (2013). Anuran acoustic signal perception in noisy environments. In H. Brumm (Ed.), Animal Communication and Noise (pp. 133–185). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  163. Verzijden, M. N., Ripmeester, E. A. P., Ohms, V. R., Snelderwaard, P., & Slabbekoorn, H. (2010). Immediate spectral flexibility in singing chiffchaffs during experimental exposure to highway noise. Journal of Experimental Biology, 213, 2575–2581.CrossRefPubMedGoogle Scholar
  164. Ware, H. E., McClure, C. J., Carlisle, J. D., & Barber, J. R. (2015). A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proceedings of the National Academy of Sciences of the United States of America, 112(39), 12105–12109.PubMedCentralCrossRefPubMedGoogle Scholar
  165. Warren, P. S., Katti, M., Ermann, M., & Brazel, A. (2006). Urban bioacoustics: It’s not just noise. Animal Behaviour, 71, 491–502.CrossRefGoogle Scholar
  166. Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in atmosphere: Implications for evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69–94.CrossRefGoogle Scholar
  167. Wisniewski, A. B., & Hulse, S. H. (1997). Auditory scene analysis in European Starlings (Sturnus vulgaris): Discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. Journal of Comparative Psychology, 111, 337–350.CrossRefGoogle Scholar
  168. Wright, T. F., Cortopassi, K. A., Bradbury, J. W., & Dooling, R. J. (2003). Hearing and vocalizations in the orange-fronted conure (Aratinga canicularis). Journal of Comparative Psychology, 117, 87–95.CrossRefPubMedGoogle Scholar
  169. Yang, X.-J., & Slabbekoorn, H. (2014). Timing vocal behavior: Lack of temporal overlap avoidance to fluctuating noise levels in singing Eurasian wrens. Behavioural Processes, 108, 131–137.CrossRefPubMedGoogle Scholar
  170. Yang, X.-J., Ma, X.-R., & Slabbekoorn, H. (2014). Timing vocal behaviour: Experimental evidence for song overlap avoidance in Eurasian wrens. Behavioural Processes, 103, 84–90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wouter Halfwerk
    • 1
    Email author
  • Bernard Lohr
    • 2
  • Hans Slabbekoorn
    • 3
  1. 1.Department of Ecological Sciences, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.University of Maryland, Baltimore County (UMBC)BaltimoreUSA
  3. 3.Faculty of ScienceInstitute of Biology Leiden (IBL), Leiden UniversityLeidenThe Netherlands

Personalised recommendations