Advertisement

Effects of Man-Made Sound on Fishes

  • Anthony D. Hawkins
  • Arthur N. Popper
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)

Abstract

Sound provides animals with a means of rapid, directional, and long-distance communication. It also provides animals with a “gestalt” view of their environment by giving an acoustic image of the world that often extends far beyond what is available from other senses. Thus, sound is highly relevant for fishes, and any interference with the ability to detect sound has potential consequences for the fitness and survival of individuals, populations, and species. There is a growing body of evidence that the addition of man-made sound in the aquatic environment has the potential to affect the ability of fishes to detect and use the biologically relevant sounds that are important for their survival. Moreover, there is also evidence that especially intense sounds not only affect sound detection and behavior but also have the potential to have physiological and physical effects on fish that could result in greatly reduced fitness and, in some cases, directly to death. This chapter examines the potential effects of man-made sound on fishes. It considers the sources of such sounds, the current data on potential effects and impacts, and implications for regulation of such sounds so that the potential impact is mitigated.

Keywords

Airguns Anthropogenic Behavior Ear Hearing Noise Pile driving Shipping Sonar 

Notes

Compliance with Ethics Requirements

Anthony D. Hawkins declares that he has no conflict of interest.

Arthur N. Popper declares that he has no conflict of interest.

References

  1. Ainslie, M. (2010). Principles of Sonar Performance Modelling. Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  2. Ainslie, M. (2011). Standard for Measurement and Monitoring of Underwater Noise, Part I: Physical Quantities and Their Units. Report TNO-DV 2011 C235, TNO, The Hague, The Netherlands.Google Scholar
  3. Ainslie, M. (2015). A century of sonar: Planetary oceanography, underwater noise monitoring, and the terminology of underwater sound. Acoustics Today, 11(1), 12-19.Google Scholar
  4. Amoser, S., Wysocki, L. E., & Ladich, F. (2004). Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. The Journal of the Acoustical Society of America, 116(6), 3789-3797.CrossRefPubMedGoogle Scholar
  5. Andrew, R. K., Howe, B. M., & Mercer, J. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online, 3, 65-70.CrossRefGoogle Scholar
  6. Bass, A. H., & Clark, C. W. (2003). The physical acoustics of underwater sound communication. In A. M. Simmons, A. N. Popper, & R. R. Fay (Eds.), Acoustic Communication (pp. 15-64). New York: Springer-Verlag.CrossRefGoogle Scholar
  7. Bass, A. H., & Ladich, F. (2008). Vocal-acoustic communication: From neurons to brain. In J. F. Webb, A. N. Popper, & R. R. Fay (Eds.), Fish Bioacoustics (pp. 253-278). New York: Springer-Verlag.CrossRefGoogle Scholar
  8. Bittencourt, L., Carvalho, R. R., Lailson-Brito, J., & Azevedo, A. F. (2014). Underwater noise pollution in a coastal tropical environment. Marine Pollution Bulletin, 83(1), 331-336.CrossRefPubMedGoogle Scholar
  9. Boehlert, G. W., & Gill, A. B. (2010). Environmental and ecological effects of ocean renewable energy development: A current synthesis. Oceanography, 23(2), 68-81.CrossRefGoogle Scholar
  10. Bolle, L. J., de Jong, C. A., Bierman, S. M., van Beek, P. J., van Keeken, O. A., Wessels, P. W., van Damme, C. J., Winter, H. V., de Haan, D., & Dekeling, R. P. (2012). Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments. PLoS ONE, 7(3), e33052.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bolle, L. J., de Jong, C. A., Bierman, S. M., van Beek, P. J., Wessels, P. W., Blom, E., van Damme, C. J., Winter, H. V., & Dekeling, R. P. (2016). Effect of pile-driving sounds on the survival of larval fish. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 91-100). New York: Springer-Verlag.Google Scholar
  12. Booth, C., Donovan, C., King, S., & Schick, R. (2014). A Protocol for Implementing the Interim Population Consequences of Disturbance (PCoD) Approach: Quantifying and Assessing the Effects of UK Offshore Renewable Energy Developments on Marine Mammal Populations. Report Number SMRUL-TCE-2013-014, Scottish Marine and Freshwater Science, 5(2). Edinburgh: Scottish Government. Available at https://goo.gl/GKu9Ek.
  13. Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.Google Scholar
  14. California Department of Transportation. (2001). Pile Installation Demonstration Project, Fisheries Impact Assessment. Caltrans Contract 04A0148, San Francisco-Oakland Bay Bridge East Span Seismic Safety Project, California Department of Transportation, Sacramento.Google Scholar
  15. Carlson, T. J., Hastings, M. C., & Popper, A. N. (2007). Update on Recommendations for Revised Interim Sound Exposure Criteria for Fish During Pile Driving Activities. Available at https://goo.gl/KRzmLh.
  16. Casaretto, L., Picciulin, M., Olsen, K., & Hawkins, A. D. (2014). Locating spawning haddock (Melanogrammus aeglefinus, Linnaeus, 1758) at sea by means of sound. Fisheries Research, 154, 127-134.CrossRefGoogle Scholar
  17. Casper, B. M., & Mann, D. A. (2009). Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae. Journal of Fish Biology, 75(10), 2768-2776.CrossRefPubMedGoogle Scholar
  18. Casper, B. M., Halvorsen, M. B., & Popper, A. N. (2012a). Are sharks even bothered by a noisy environment? In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 93-97). New York: Springer-Verlag.CrossRefGoogle Scholar
  19. Casper, B. M., Popper, A. N., Matthews, F., Carlson, T. J., & Halvorsen, M. B. (2012b). Recovery of barotrauma injuries in Chinook salmon, Oncorhynchus tshawytscha, from exposure to pile driving sound. PLoS ONE, 7(6), e39593.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Casper, B. M., Halvorsen, M. B., Matthews, F., Carlson, T. J., & Popper, A. N. (2013a). Recovery of barotrauma injuries resulting from exposure to pile driving sound in two sizes of hybrid striped bass. PLoS ONE, 8(9), e73844.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Casper, B. M., Smith, M. E., Halvorsen, M. B., Sun, H., Carlson, T. J., & Popper, A. N. (2013b). Effects of exposure to pile driving sounds on fish inner ear tissues. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 166(2), 352-360.CrossRefGoogle Scholar
  22. Chapman, C. J., & Hawkins, A. (1973). A field study of hearing in the cod, Gadus morhua L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 85, 147-167.CrossRefGoogle Scholar
  23. Chapman, C. J., & Johnstone, A. D. (1974). Some auditory discrimination experiments on marine fish. Journal of Experimental Biology, 61(2), 521-528.PubMedGoogle Scholar
  24. Chapman, C. J., & Sand, O. (1974). Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comparative Biochemistry and Physiology Part A: Physiology, 47(1), 371-385.CrossRefGoogle Scholar
  25. Cheesman, S. (2016). Measurements of operational wind turbine noise in UK waters. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 153-160). New York: Springer-Verlag.CrossRefGoogle Scholar
  26. Continental Shelf Associates. (2004). Explosive Removal of Offshore Structures - Information Synthesis Report. Outer Continental Shelf (OCS) Study MMS 2003-070 prepared by Continental Shelf Associates for the Minerals Management Service,, Gulf of Mexico OCS Region, US Department of the Interior, New Orleans, LA.Google Scholar
  27. Coombs, S., & Popper, A. N. (1979). Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132(2), 203-207.CrossRefGoogle Scholar
  28. Corwin, J. T. (1977). Morphology of the macula neglecta in sharks of the genus Carcharhinus. Journal of Morphology, 152(3), 341-362.CrossRefPubMedGoogle Scholar
  29. Corwin, J. T. (1983). Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: Continual increases in hair cell number, neural convergence, and physiological sensitivity. Journal of Comparative Neurology, 217(3), 345-356.CrossRefPubMedGoogle Scholar
  30. Cotter, A. J. R. (2008). The “soundscape” of the sea, underwater navigation, and why we should be listening more. In A. Payne, J. Cotter and T. Potter (Eds.), Advances in Fisheries Science: 50 Years on from Beverton and Holt (pp. 451-471). Oxford, UK: Blackwell Publishing.CrossRefGoogle Scholar
  31. Dahl, P. H., de Jong, C. A. F., & Popper, A. N. (2015). The underwater sound field from impact pile driving and its potential effects on marine life. Acoustics Today, 11(2), 18-25.Google Scholar
  32. de Jong, C., Ainslie, M., & Blacquière, G. (2011). Standard for Measurement and Monitoring of Underwater Noise, Part II: Procedures for Measuring Underwater Noise in Connection with Offshore Wind Farm Licensing. Report TNO-DV 2011 C235, TNO, The Hague, The Nertherlands. Available at https://goo.gl/hzQrGV
  33. Dooling, R. J., & Blumenrath, S. H. (2016). Masking experiments in humans and birds using anthropogenic noises. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 239-243). New York: Springer-Verlag.CrossRefGoogle Scholar
  34. Dooling, R. J., Leek, M. R., & Popper, A. N. (2015). Effects of noise on fishes: What we can learn from humans and birds. Integrative Zoology, 10(1), 29-37.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Ellison, W. T., & Frankel, A. S. (2012). A common sense approach to source metrics. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 433-438). New York: Springer-Verlag.CrossRefGoogle Scholar
  36. Ellison, W. T., Southall, B. L., Clark, C. W., & Frankel, A. S. (2012). A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conservation Biology, 26(1), 21-28.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Engås, A., & Løkkeborg, S. (2002). Effects of seismic shooting and vessel-generated noise on fish behaviour and catch rates. Bioacoustics, 2(3), 313-316.CrossRefGoogle Scholar
  38. Engås, A., Løkkeborg, S., Ona, E., & Soldal, A. V. (1996). Effects of seismic shooting on local abundance and catch rates of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Canadian Journal of Fisheries and Aquatic Sciences, 53, 2238-2249.CrossRefGoogle Scholar
  39. Enger, P. S. (1981). Frequency discrimination in teleosts—Central or peripheral? In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and Sound Communication in Fishes (pp. 243-255). New York: Springer-Verlag.CrossRefGoogle Scholar
  40. Erbe, C., MacGillivray, A., & Williams, R. (2012). Mapping cumulative noise from shipping to inform marine spatial planning. The Journal of the Acoustical Society of America, 132(5), EL423-EL438.CrossRefPubMedGoogle Scholar
  41. Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K., & Dooling, R. (2016). Communication masking in marine mammals: A review and research strategy. Marine Pollution Bulletin, 103(1-2), 15-38.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fay, R. R. (1974). Masking of tones by noise for the goldfish (Carassius auratus). Journal of Comparative and Physiological Psychology, 87(4), 708-716.CrossRefPubMedGoogle Scholar
  43. Fay, R. R. (2005). Sound source localization by fishes. In A. N. Popper & R. R. Fay (Eds.), Sound Source Localization (pp. 36-66). New York: Springer-Verlag.CrossRefGoogle Scholar
  44. Fay, R. R. (2009). Sound source segregation by goldfish: Two simultaneous tones. The Journal of the Acoustical Society of America, 125(6), 4053-4059.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Filiciotto, F., Cecchini, S., Buscaino, G., Maccarrone, V., Piccione, G., & Fazio, F. (2016). Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquaculture Research, 48, 1895-1903.CrossRefGoogle Scholar
  46. Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12(1), 47.CrossRefGoogle Scholar
  47. Francis, C. D., & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11(6), 305-313.CrossRefGoogle Scholar
  48. Gisiner, R. (2016). Sound and marine seismic surveys. Acoustics Today, 12(4), 10-18.Google Scholar
  49. Govoni, J. J., West, M. A., Settle, L., Lynch, R. T., & Greene, M. D. (2008). Effects of underwater explosions on larval fish: Implications for a coastal engineering project. Journal of Coastal Research, 24, 228-233.CrossRefGoogle Scholar
  50. Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J., & Popper, A. N. (2011). Hydroacoustic Impacts on Fish from Pile Installation. NCHRP Research Results Digest 363, Project 25-28, National Cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington, DC. Available at http://www.trb.org/Publications/Blurbs/166159.aspx.
  51. Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J., & Popper, A. N. (2012a). Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS ONE, 7(6), e38968.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Halvorsen, M. B., Casper, B. M., Matthews, F., Carlson, T. J., & Popper, A. N. (2012b). Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4705-4714.CrossRefPubMedGoogle Scholar
  53. Halvorsen, M. B., Zeddies, D. G., Ellison, W. T., Chicoine, D. R., & Popper, A. N. (2012c). Effects of mid-frequency active sonar on hearing in fish. The Journal of the Acoustical Society of America, 131(1), 599-607.CrossRefPubMedGoogle Scholar
  54. Halvorsen, M. B., Zeddies, D. G., Chicoine, D., & Popper, A. N. (2013). Effects of low-frequency naval sonar exposure on three species of fish. The Journal of the Acoustical Society of America, 134(2), EL205-EL210.CrossRefPubMedGoogle Scholar
  55. Hastings, M. C. (2008). Coming to terms with the effects of ocean noise on marine animals. Acoustics Today, 4(2), 22-34.CrossRefGoogle Scholar
  56. Hastings, M. C., Popper, A. N., Finneran, J. J., & Lanford, P. J. (1996). Effects of low-frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus. The Journal of the Acoustical Society of America, 99(3), 1759-1766.CrossRefPubMedGoogle Scholar
  57. Hawkins, A. D., & Chapman, C. J. (1966). Underwater sounds of the haddock, Melanogrammus aeglifinus. Journal of the Marine Biological Association of the United Kingdom, 46, 241-247.CrossRefGoogle Scholar
  58. Hawkins, A. D., & Chapman, C. J. (1975). Masked auditory thresholds in the cod, Gadus morhua L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 103(2), 209-226.CrossRefGoogle Scholar
  59. Hawkins, A. D., & MacLennan, D. N. (1976). An acoustic tank for hearing studies on fish. In A. Schuijf & A. D. Hawkins (Eds.), Sound Reception in Fish (149-169). Amsterdam: Elsevier.Google Scholar
  60. Hawkins, A. D., & Sand, O. (1977). Directional hearing in the median vertical plane by the cod. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 122(1), 1-8.CrossRefGoogle Scholar
  61. Hawkins, A. D., & Johnstone, A. D. F. (1978). The hearing of the Atlantic salmon, Salmo salar. Journal of Fish Biology, 13, 655-673.CrossRefGoogle Scholar
  62. Hawkins, A. D., & Myrberg, A. A., Jr. (1983). Hearing and sound communication underwater. In B. Lewis (Ed.), Bioacoustics: A Comparative Approach (pp. 347-405). London: Academic Press.Google Scholar
  63. Hawkins, A. D., & Popper, A. N. (2014). Assessing the impacts of underwater sounds on fishes and other forms of marine life. Acoustics Today, 10(2), 30-41.Google Scholar
  64. Hawkins, A. D., & Popper, A. N. (2016). Developing sound exposure criteria for fishes. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 431-439). New York: Springer-Verlag.CrossRefGoogle Scholar
  65. Hawkins, A. D., MacLennan, D. N., Urquhart, G. G., & Robb, C. (1974). Tracking cod Gadus morhua L. in a Scottish sea loch. Journal of Fish Biology, 6(3), 225-236.CrossRefGoogle Scholar
  66. Hawkins, A. D., Roberts, L., & Cheesman, S. (2014). Responses of free-living coastal pelagic fish to impulsive sounds. The Journal of the Acoustical Society of America, 135(5), 3101-3116.CrossRefPubMedGoogle Scholar
  67. Hawkins, A. D., Pembroke, A., & Popper, A. N. (2015). Information gaps in understanding the effects of noise on fishes and invertebrates. Reviews in Fish Biology and Fisheries, 25, 39-64.CrossRefGoogle Scholar
  68. Hazelwood, R. A. (2012). Ground roll waves as a potential influence on fish: Measurement and analysis techniques. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 449-452). New York: Springer-Verlag.CrossRefGoogle Scholar
  69. Henderson, D., & Hamernik, R. P. (2012). The use of kurtosis measurement in the assessment of potential noise trauma. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss: Scientific Advances (pp. 41-55). New York: Springer-Verlag.CrossRefGoogle Scholar
  70. Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5-20.CrossRefGoogle Scholar
  71. Hobday, A., Smith, A., Stobutzki, I., Bulman, C., Daley, R., Dambacher, J., Deng, R., Dowdney, J., Fuller, M., & Furlani, D. (2011). Ecological risk assessment for the effects of fishing. Fisheries Research, 108(2), 372-384.CrossRefGoogle Scholar
  72. Holles, S., Simpson, S. D., Radford, A. N., Berten, L., & Lecchini, D. (2013). Boat noise disrupts orientation behaviour in a coral reef fish. Marine Ecology Progress Series, 485, 295-300.CrossRefGoogle Scholar
  73. Jacobs, D. W., & Tavolga, W. N. (1967). Acoustic intensity limens in the goldfish. Animal Behaviour, 15(2), 324-335.CrossRefPubMedGoogle Scholar
  74. Kaatz, I. M. (2002). Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics, 12(2-3), 230-233.CrossRefGoogle Scholar
  75. Keevin, T. M., & Hempen, G. L. (1997). The Environmental Effects of Underwater Explosions with Methods to Mitigate Impacts. SDMS Doc ID 550560, US Army Corps of Engineers, St. Louis District, St. Louis, MO. Available at https://semspub.epa.gov/work/01/550560.pdf.
  76. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14(10), 1052-1061.CrossRefPubMedGoogle Scholar
  77. Klages, M., Muyakshin, S., Soltwedel, T., & Arntz, W. E. (2002). Mechanoreception, a possible mechanism for food fall detection in deep-sea scavengers. Deep-Sea Research Part I: Oceanographic Research Papers, 49(1), 143-155.CrossRefGoogle Scholar
  78. Knudsen, F. R., Enger, P. S., & Sand, O. (1992). Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. Journal of Fish Biology, 40, 523-534.CrossRefGoogle Scholar
  79. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077-14085.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Kunc, H. P., Lyons, G. N., Sigwart, J. D., McLaughlin, K. E., & Houghton, J. D. R. (2014). Anthropogenic noise affects behavior across sensory modalities. The American Naturalist, 184(4), E93-E100.CrossRefPubMedGoogle Scholar
  81. Kunc, H. P., McLaughlin, K. E., & Schmidt, R. (2016). Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283(1836), 20160839. doi: https://doi.org/10.1098/rspb.2016.0839.CrossRefPubMedGoogle Scholar
  82. Ladich, F. (2013). Effects of noise on sound detection and acoustic communication in fishes. In H. Brumm (Ed.), Animal Communication and Noise (pp. 65-90). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  83. Laughlin, J. (2006). Underwater Sound Levels Associated with Pile Driving at the Cape Disappointment Boat Launch Facility, Wave Barrier Project. Report prepared by the Washington State Department of Transportation, Seattle.Google Scholar
  84. Le Prell, C. G., Henderson, D., Fay, R. R., & Popper, A. N. (Eds.). (2012). Noise-Induced Hearing Loss: Scientific Advances. New York: Springer-Verlag.Google Scholar
  85. Lin, H., Furman, A., Kujawa, S., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605-616.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Løkkeborg, S., Ona, E., Vold, A., & Salthaug, A. (2012a). Effects of sounds from seismic air guns on fish behavior and catch rates. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 415-419). New York: Springer-Verlag.CrossRefGoogle Scholar
  87. Løkkeborg, S., Ona, E., Vold, A., Salthaug, A., & Jech, J. M. (2012b). Sounds from seismic air guns: Gear- and species-specific effects on catch rates and fish distribution. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 1278-1291.CrossRefGoogle Scholar
  88. Luczkovich, J. J., Pullinger, R. C., Johnson, S. E., & Sprague, M. W. (2008). Identifying sciaenid critical spawning habitats by the use of passive acoustics. Transactions of the American Fisheries Society, 137(2), 576-605.CrossRefGoogle Scholar
  89. Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K., & Tyack, P. (2006). Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs. Marine Ecology Progress Series, 309, 279-295.CrossRefGoogle Scholar
  90. Mann, D. A., Higgs, D. M., Tavolga, W. N., Souza, M. J., & Popper, A. N. (2001). Ultrasound detection by clupeiform fishes. The Journal of the Acoustical Society of America, 109(6), 3048-3054.CrossRefPubMedGoogle Scholar
  91. Martin, B., Zeddies, D. G., Gaudet, B., & Richard, J. (2016). Evaluation of three sensor types for particle motion measurement. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 679-686). New York: Springer-Verlag.CrossRefGoogle Scholar
  92. Martin, S. B., & Popper, A. N. (2016). Short-and long-term monitoring of underwater sound levels in the Hudson River (New York, USA). The Journal of the Acoustical Society of America, 139(4), 1886-1897.CrossRefPubMedGoogle Scholar
  93. Mattsson, A., Parkes, G., & Hedgeland, D. (2012). Svein Vaage broadband air gun study. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 469-471). New York: Springer-Verlag.CrossRefGoogle Scholar
  94. McCauley, R. D., Fewtrell, J., & Popper, A. N. (2003). High intensity anthropogenic sound damages fish ears. The Journal of the Acoustical Society of America, 113(1), 638-642.CrossRefPubMedGoogle Scholar
  95. McKenna, M. F., Ross, D., Wiggins, S. M., & Hildebrand, J. A. (2012). Underwater radiated noise from modern commercial ships. The Journal of the Acoustical Society of America, 131(1), 92-103.CrossRefPubMedGoogle Scholar
  96. Morley, E. L., Jones, G., & Radford, A. N. (2014). The importance of invertebrates when considering the impacts of anthropogenic noise. Proceedings of the Royal Society B: Biological Sciences, 281(1776), 20132683.CrossRefPubMedGoogle Scholar
  97. Moulton, J. M. (1963). Acoustic behaviour of fishes. In R.-G. Busnel (Ed.), Acoustic Behaviour of Animals (pp. 655-693). Amsterdam: Elsevier.Google Scholar
  98. Mueller-Blenkle, C., McGregor, P. K., Gill, A. B., Andersson, M. H., Metcalfe, J., Bendall, V., Sigray, P., Wood, D. T., & Thomsen, F. (2010). Effects of Pile-Driving Noise on the Behaviour of Marine Fish. Cowrie Ref: Fish 06-08, Technical Report 31st March 2010. Available at https://goo.gl/YXDC8i.
  99. Myrberg, A. A., Jr. (1981). Sound communication and interception in fishes. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and Sound Communication in Fishes (pp. 395-426). New York: Springer-Verlag.CrossRefGoogle Scholar
  100. Myrberg, A. A., Jr. (2001). The acoustical biology of elasmobranchs. Environmental Biology of Fishes, 60(1-3), 31-46.Google Scholar
  101. National Marine Fisheries Service (NMFS). (2016). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. NOAA Technical Memorandum NMFS-OPR-55, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce, Washington, DC. Available at https://goo.gl/F2VPU6.
  102. National Research Council. (2005). Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects. Washington, DC: National Academies Press.Google Scholar
  103. Nedelec, S. L., Radford, A. N., Simpson, S. D., Nedelec, B., Lecchini, D., & Mills, S. C. (2014). Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Science Reports, 4, 5891. doi: https://doi.org/10.1038/srep05891.CrossRefGoogle Scholar
  104. Nedelec, S. L., Campbell, J., Radford, A. N., Simpson, S. D., & Merchant, N. D. (2016). Particle motion: The missing link in underwater acoustic ecology. Methods in Ecology and Evolution, 7, 836-842.CrossRefGoogle Scholar
  105. Nedwell, J. R., Turnpenny, A. W. H., Lovell, J. M., & Edwards, B. (2006). An investigation into the effects of underwater piling noise on salmonids. The Journal of the Acoustical Society of America, 120(5), 2550-2554.CrossRefPubMedGoogle Scholar
  106. Nedwell, J. R., Parvin, S. J., Edwards, B., Workman, R., Brooker, A. G., & Kynoch, J. E. (2007). Measurement and Interpretation of Underwater Noise During Construction and Operation of Offshore Windfarms in UK Waters. Subacoustch Report No. 544R0738 for Cowrie Ltd., UK. Available at https://goo.gl/cCJyfK.
  107. Neo, Y. Y., Seitz, J., Kastelein, R. A., Winter, H. V., ten Cate, C., & Slabbekoorn, H. (2014). Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biological Conservation, 178, 65-73.CrossRefGoogle Scholar
  108. Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P., & Fox, C. G. (2004). Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. The Journal of Acoustical Society of America, 115, 1832-1843.CrossRefGoogle Scholar
  109. Nieukirk, S. L., Klinck, H., Mellinger, D. K., Klinck, K., & Dziak, R. P. (2014). Seismic airgun surveys and vessel traffic in the Fram Strait and their contribution to the polar soundscape. The Journal of the Acoustical Society of America, 136(4), 2154.CrossRefGoogle Scholar
  110. Oestman, R., Buehler, D., Reyff, J., & Rodkin, R. (2009). Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish. Report by ICF International and Illingworth and Rodkin Inc. prepared for the California Department of Transportation, Sacramento.Google Scholar
  111. Parvulescu, A. (Ed.). (1964). Problems of Propagation and Processing. Oxford, UK: Pergamon Press.Google Scholar
  112. Pine, M. K., Jeffs, A. G., Wang, D., & Radford, C. A. (2016). The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean & Coastal Management, 127, 63-73.CrossRefGoogle Scholar
  113. Popper, A. N., & Clarke, N. L. (1979). Non-simultaneous auditory masking in the goldfish, Carassius auratus. Journal of Experimental Biology, 83, 145-158.PubMedGoogle Scholar
  114. Popper, A. N., & Hastings, M. C. (2009). The effects of anthropogenic sources of sound on fishes. Journal of Fish Biology, 75(3), 455-489.CrossRefPubMedGoogle Scholar
  115. Popper, A. N., & Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273(1), 25-36.CrossRefPubMedGoogle Scholar
  116. Popper, A. N., & Hawkins, A. (Eds.). (2012). The Effects of Noise on Aquatic Life. New York: Springer-Verlag.Google Scholar
  117. Popper, A. N., & Hawkins, A. (Eds.). (2016). The Effects of Noise on Aquatic Life II. New York: Springer-Verlag.Google Scholar
  118. Popper, A. N., Salmon, M., & Horch, K. W. (2001). Acoustic detection and communication by decapod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187(2), 83-89.CrossRefGoogle Scholar
  119. Popper, A. N., Fay, R. R., Platt, C., & Sand, O. (2003). Sound detection mechanisms and capabilities of teleost fishes. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments (pp. 3-38). New York: Springer-Verlag.CrossRefGoogle Scholar
  120. Popper, A. N., Smith, M. E., Cott, P. A., Hanna, B. W., MacGillivray, A. O., Austin, M. E., & Mann, D. A. (2005). Effects of exposure to seismic airgun use on hearing of three fish species. The Journal of the Acoustical Society of America, 117(6), 3958-3971.CrossRefPubMedGoogle Scholar
  121. Popper, A. N., Halvorsen, M. B., Kane, A. S., Miller, D. L., Smith, M. E., Song, J., Stein, P., & Wysocki, L. E. (2007). The effects of high-intensity, low-frequency active sonar on rainbow trout. The Journal of the Acoustical Society of America, 122(1), 623-635.CrossRefPubMedGoogle Scholar
  122. Popper, A. N., Hawkins, A. D., Fay, R. R., Mann, D. A., Bartol, S., Carlson, T. J., Coombs, S., Ellison, W. T., Gentry, R. L., Halvorsen, M. B., Lokkeborg, S., Rogers, P., Southall, B. L., Zeddies, D. G., & Tavolga, W. N. (2014). Sound exposure guidelines. In ASA S3/SC1. 4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles. A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI (pp. 33–51). New York: Springer International Publishing.Google Scholar
  123. Popper, A. N., Gross, J. A., Carlson, T. J., Skalski, J., Young, J. V., Hawkins, A. D., & Zeddies, D. (2016). Effects of exposure to the sound from seismic airguns on pallid sturgeon and paddlefish. PLoS ONE, 11(8), e0159486.PubMedCentralCrossRefPubMedGoogle Scholar
  124. Rabinowitz, P. M. (2012). The public health significance of noise-induced hearing loss. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss: Scientific Advances (pp. 13-26). New York: Springer-Verlag.CrossRefGoogle Scholar
  125. Radford, A. N., Kerridge, E., & Simpson, S. D. (2014). Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behavioral Ecology, 25, 1022-1030.CrossRefGoogle Scholar
  126. Ramcharitar, J., Gannon, D. P., & Popper, A. N. (2006). Bioacoustics of the family Sciaenidae (croakers and drumfishes). Transactions of the American Fisheries Society, 135, 1409-1431.CrossRefGoogle Scholar
  127. Remage-Healey, L., Nowacek, D. P., & Bass, A. H. (2006). Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. Journal of Experimental Biology, 209, 4444-4451.CrossRefPubMedGoogle Scholar
  128. Reyff, J. A. (2016). Underwater sound propagation from marine pile driving. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 909-915). New York: Springer-Verlag.CrossRefGoogle Scholar
  129. Richardson, W. J., Greene, C. R., Jr., Malme, C. I., & Thomson, D. H. (1995). Marine Mammals and Noise. New York: Academic Press.Google Scholar
  130. Robinson, S. P., Theobald, P. D., Lepper, P. A., Hayman, G., Humphrey, V. F., Wang, L.-S., & Mumford, S. (2012). Measurement of underwater noise arising from marine aggregate operations. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 465-468). New York: Springer-Verlag.CrossRefGoogle Scholar
  131. Rodkin, R. B., & Reyff, J. A. (2008). Underwater sound from marine pile driving. Bioacoustics, 17(1-3), 138-140.CrossRefGoogle Scholar
  132. Rogers, P. H., Hawkins, A. D., Popper, A. N., Fay, R. R., & Gray, M. D. (2016). Parvulescu revisited: Small tank acoustics for bioacousticians. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 933-941). New York: Springer-Verlag.CrossRefGoogle Scholar
  133. Ross, D. (1987). Mechanics of Underwater Noise. Los Altos, CA: Peninsula Publishing.Google Scholar
  134. Ross, D. (1993). On ocean underwater ambient noise. Acoustics Bulletin, 18, 5-8.Google Scholar
  135. Rossi, E., Licitra, G., Iacoponi, A., & Taburni, D. (2016). Assessing the underwater ship noise levels in the North Tyrrhenian Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 943-949). New York: Springer-Verlag.CrossRefGoogle Scholar
  136. Rossington, K., Benson, T., Lepper, P., & Jones, D. (2013). Eco-hydro-acoustic modeling and its use as an EIA tool. Marine Pollution Bulletin, 75(1-2), 235-243.CrossRefPubMedGoogle Scholar
  137. Sand, O., & Enger, P. S. (1973). Function of the swimbladder in fish hearing. In A. Moller (Ed.), Basic Mechanisms of Hearing (pp. 893-908). New York: Academic Press.CrossRefGoogle Scholar
  138. Sand, O., & Hawkins, A. D. (1973). Acoustic properties of the cod swim bladder. Journal of Experimental Biology, 58, 797-820.Google Scholar
  139. Sand, O., & Bleckmann, H. (2008). Orientation to auditory and lateral line stimuli. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish Bioacoustics (pp. 183-222). New York: Springer-Verlag.CrossRefGoogle Scholar
  140. Sarà, G., Dean, J. M., D’Amato, D., Buscaino, G., Oliveri, A., Genovese, S., Ferro, S., Buffa, G., Lo Martire, M., & Mazzola, S. (2007). Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Marine Ecology Progress Series, 33, 243-253.CrossRefGoogle Scholar
  141. Schuijf, A., & Buwalda, R. (1975). On the mechanism of directional hearing in cod (Gadus morhua L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 98(4), 333-343.CrossRefGoogle Scholar
  142. Schuijf, A., & Hawkins, A. (1983). Acoustic distance discrimination by the cod. Nature. 302, 143-144.CrossRefGoogle Scholar
  143. Schulz-Mirbach, T., Hess, M., Metscher, B. D., & Ladich, F. (2013). A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study. BMC Biology, 11, 1-13.CrossRefGoogle Scholar
  144. Sertlek, H. Ö., Aarts, G., Brasseur, S., Slabbekoorn, H., ten Cate, C., von Benda-Beckmann, A. M., & Ainslie, M. A. (2016). Mapping underwater sound in the Dutch part of the North Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1001-1006). New York: Springer-Verlag.CrossRefGoogle Scholar
  145. Sigray, P., & Andersson, M. H. (2011). Particle motion measured at an operational wind turbine in relation to hearing sensitivity in fish. The Journal of the Acoustical Society of America, 130(1), 200-207.CrossRefPubMedGoogle Scholar
  146. Sigray, P., & Andersson, M. H. (2012). Underwater particle acceleration induced by a wind turbine in the Baltic Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 489-492). New York: Springer-Verlag.CrossRefGoogle Scholar
  147. Simpson, S., Meekan, M., McCauley, R., & Jeffs, A. (2004). Attraction of settlement-stage coral reef fishes to reef noise. Marine Ecology Progress Series, 276(1), 263-268.CrossRefGoogle Scholar
  148. Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R., & Jeffs, A. (2005). Homeward sound. Science, 308(5719), 221.CrossRefPubMedGoogle Scholar
  149. Skalski, J. R., Pearson, W. H., & Malme, C. I. (1992). Effects of sounds from a geophysical survey device on catch-per-unit-effort in a hook-and-line fishery for rockfish (Sebastes spp.). Canadian Journal of Fisheries and Aquatic Sciences, 49, 1357-1365.CrossRefGoogle Scholar
  150. Slabbekoorn, H. (2016). Aiming for progress in understanding underwater noise impact on fish: Complementary need for indoor and outdoor studies. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1057-1065). New York: Springer-Verlag.CrossRefGoogle Scholar
  151. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5-e8.CrossRefGoogle Scholar
  152. Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 25(7), 419-427.CrossRefPubMedGoogle Scholar
  153. Slotte, A., Hansen, K., Dalen, J., & Ona, E. (2004). Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast. Fisheries Research, 67(2), 143-150.CrossRefGoogle Scholar
  154. Smith, A., Fulton, E., Hobday, A., Smith, D., & Shoulder, P. (2007). Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES Journal of Marine Science, 64(4), 633-639.CrossRefGoogle Scholar
  155. Smith, M. E., Kane, A. S., & Popper, A. N. (2004). Acoustical stress and hearing sensitivity in fishes: Does the linear threshold shift hypothesis hold water? Journal of Experimental Biology, 207, 3591-3602.CrossRefPubMedGoogle Scholar
  156. Smith, M. E., Coffin, A. B., Miller, D. L., & Popper, A. N. (2006). Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. Journal of Experimental Biology, 209, 4193-4202.CrossRefPubMedGoogle Scholar
  157. Song, J., Mann, D. A., Cott, P. A., Hanna, B. W., & Popper, A. N. (2008). The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds. The Journal of the Acoustical Society of America, 124(2), 1360-1366.PubMedCentralCrossRefPubMedGoogle Scholar
  158. Southall, B. L. (2005). Shipping Noise and Marine Mammals: A Forum for Science, Technology, and Management. Final Report of the National Oceanic and Atmospheric Administration (NOAA) International Symposium, Arlington, VA, May 18–19, 2004.Google Scholar
  159. Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., Jr., Kastak, D., Ketten, D. R., Miller, J. H., Nachtigall, P. E., Richardson, W. J., Thomas, J. A., & Tyack, P. L. (2007). Marine mammal noise exposure criteria: Initial scientific recommendations. Aquatic Mammals, 33, 411–521.Google Scholar
  160. Stadler, J. H., & Woodbury, D. P. (2009). Assessing the effects to fishes from pile driving: Application of new hydroacoustic criteria. Proceedings of the 38th International Congress and Exposition on Noise Control Engineering 2009 (Inter-Noise 2009), Ottawa, ON, Canada, August 23–25, 2009.Google Scholar
  161. Stanley, J. A., Radford, C. A., & Jeffs, A. G. (2012). Location, location, location: Finding a suitable home among the noise. Proceedings of the Royal Society of London B: Biological Sciences, 279(1742), 3622-3631.CrossRefGoogle Scholar
  162. Tavolga, W. N. (1964). Marine Bio-Acoustics. Oxford, UK: Pergamon Press.Google Scholar
  163. Tavolga, W. N. (1967). Marine Bio-Acoustics II. Oxford, UK: Pergamon Press.Google Scholar
  164. Tavolga, W. N., Popper, A. N., & Fay, R. R. (1981). Hearing and Sound Communication in Fishes. New York: Springer-Verlag.CrossRefGoogle Scholar
  165. Tennessen, J. B., Parks, S. E., & Langkilde, T. L. (2016). Anthropogenic noise and physiological stress in wildlife. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1145-1148). New York: Springer-Verlag.CrossRefGoogle Scholar
  166. Tester, A. L., Kendall, J. I., & Milisen, W. B. (1972). Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pacific Science, 26, 264-274.Google Scholar
  167. Thomsen, F., Gill, A., Kosecka, M., Andersson, M., Andre, M., Degraer, S., Folegot, T., Gabriel, J., Judd, A., Neumann, N., Norro, A., Risch, D., Sigray, P., Wood, D., & Wilson, B. (2016). MaRVEN—Environmental Impacts of Noise, Vibrations and Electromagnetic Emissions from Marine Renewable Energy. Final Study Report, Directorate General for Research and Innovation, European Commission, Brussels. Available at https://goo.gl/wzQSyc.
  168. Urick, R. J. (1983). Principles of Underwater Sound, 3rd ed. New York: McGraw-Hill.Google Scholar
  169. Voellmy, I. K., Purser, J., Flynn, D., Kennedy, P., Simpson, S. D., & Radford, A. N. (2014). Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Animal Behaviour, 89, 191-198.CrossRefGoogle Scholar
  170. Wahlberg, M., & Westerberg, H. (2005). Hearing in fish and their reactions to sound from offshore wind farms. Marine Ecology Progress Series, 288, 298-309.CrossRefGoogle Scholar
  171. Wardle, C. S., Carter, T. J., Urquhart, G. G., Johnstone, A. D. F., Ziolkowski, A. M., Hampson, G., & Mackie, D. (2001). Effects of seismic air guns on marine fish. Continental Shelf Research, 21, 1005-1027.CrossRefGoogle Scholar
  172. Webb, J. F., Fay, R. R., & Popper, A. N. (Eds.). (2008). Fish Bioacoustics. New York: Springer-Verlag.Google Scholar
  173. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34, 1936-1956.CrossRefGoogle Scholar
  174. Weston, D. E. (1960). Underwater explosions as acoustic sources. Proceedings of the Physical Society, 76, 233-249.CrossRefGoogle Scholar
  175. Woodbury, D., & Stadler, J. (2008). A proposed method to assess physical Injury to fishes from underwater sound produced during pile driving. Bioacoustics, 17, 289-297.CrossRefGoogle Scholar
  176. Wysocki, L. E., Dittami, J. P., & Ladich, F. (2006). Ship noise and cortisol secretion in European freshwater fishes. Biological Conservation, 128(4), 501-508.CrossRefGoogle Scholar
  177. Wysocki, L. E., Davidson, J. W., III, Smith, M. E., Frankel, A. S., Ellison, W. T., Mazik, P. M., Popper, A. N., & Bebak, J. (2007). Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture, 272(1-4), 687-697.CrossRefGoogle Scholar
  178. Yelverton, J. T., Richmond, D. R., Hicks, W., Saunders, H., & Fletcher, E. R. (1975). The Relationship Between Fish Size and Their Response to Underwater Blast. Report DNA 3677T prepared for the Defense Nuclear Agency by the Lovelace Foundation For Medical Education and Research, Albuquerque, NM. Available at http://www.dtic.mil/dtic/tr/fulltext/u2/a015970.pdf.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anthony D. Hawkins
    • 1
  • Arthur N. Popper
    • 2
  1. 1.Loughine Ltd.AberdeenUK
  2. 2.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations