Advertisement

Acoustic Conditions Affecting Sound Communication in Air and Underwater

  • Ole Næsbye LarsenEmail author
  • Craig Radford
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)

Abstract

Biodiversity across the animal kingdom is reflected in acoustic diversity, and the evolution of these signals is driven by the ability to produce and hear sounds within the complex nature of soundscapes. Signals from the sender are attenuated and their structure is changed during propagation to receivers, and other sounds contributing to the soundscape can interfere with signals intended for the receiver. Therefore, the message encoded in the sender’s signal may be difficult or impossible for the potential receiver to decode unless the receiver adapts behaviorally. This chapter discusses the potential effects of sound propagation and environmental sound on communication both in air and underwater. First, the wave equation is defined; second, attenuation, absorption and scattering principles are discussed in relation to physical sound propagation effects on the sender’s signal; and third, abiotic, biotic, and anthropogenic sources of environmental noise are introduced and discussed. Environmental noise is present in all habitats, and soundscapes are getting louder, in part mostly due to increased anthropogenic noise inputs. Therefore, animals that rely on sound to communicate have to adapt and evolve to their local soundscape to get their message across.

Keywords

Abiotic noise Acoustic near and far field Biotic noise Cylindrical attenuation Diffraction Ground effect Medium absorption Reflection Refraction Reverberation Scattering Shallow-water acoustics Spherical attenuation Turbulence Wave equation 

Notes

Acknowledgments

We are grateful to the editors and an anonymous referee for improving the manuscript.

Compliance with Ethics Requirements

Ole Næsbye Larsen declares that he has no conflict of interest.

Craig Radford declares that he has no conflict of interest.

References

  1. Ainslie, M. A., & McColm, J. G. (1998). A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671-1672.CrossRefGoogle Scholar
  2. Amorim, M. C. P. (2006). Diversity of sound production in fish. In F. Ladich, S. P. Collin, P. Moller, & B. G. Kapoor (Eds.), Communication in Fishes (pp. 71-105). Enfield, NH: Science Publishers.Google Scholar
  3. Amorim, M. C. P., & Hawkins, A. D. (2000). Growling for food: Acoustic emissions during competitive feeding of the streaked gurnard. Journal of Fish Biology, 57(4), 895-907.CrossRefGoogle Scholar
  4. Attenborough, K. (2007). Sound propagation in the atmosphere. In T. D. Rossing (Ed.), Springer Handbook of Acoustics (pp. 113-147). New York: Springer-Verlag.CrossRefGoogle Scholar
  5. Attenborough, K., Li, K. M., & Horoshenkov, K. (2007). Predicting Outdoor Sound. London, New York: Taylor and Francis.Google Scholar
  6. Au, W. W. L., & Banks, K. (1998). The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. The Journal of the Acoustical Society of America, 103, 41-47.CrossRefGoogle Scholar
  7. Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. New York: Springer-Verlag.CrossRefGoogle Scholar
  8. Balakrishnan, R. (2005). Neurobiology and behaviour: A network of connections. Current Science 89, 1147-1165.Google Scholar
  9. Bass, H. E., Sutherland, L. C., Zuckerwar, A. J., Blackstock, D. T., & Hester, D. M. (1995). Atmospheric absorption of sound: Further developments. The Journal of the Acoustical Society of America, 97(1), 680-683.CrossRefGoogle Scholar
  10. Blackstock, D. T. (2000). Fundamentals of Physical Acoustics. New York: John Wiley & Sons.Google Scholar
  11. Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
  12. Brown, T. J., & Hanford, P. (2003). Why birds sing at dawn: The role of consistent song transmission. Ibis 145, 120-129.CrossRefGoogle Scholar
  13. Brumm, H. (2006). Signalling through acoustic windows: Nightingales avoid interspecific competition by short-term adjustment of song timing. Journal of Comparative Physiology A: Neuroethology, Sensory,Neural, and Behavioral Physiology 192, 1279-1285.CrossRefPubMedGoogle Scholar
  14. Brumm, H., & Todt, D. (2002). Noise-dependent song amplitude regulation in a territorial songbird. Animal Behaviour, 63, 891-897.CrossRefGoogle Scholar
  15. Brumm, H., & Slater, P. J. B. (2006). Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behavioural Ecology and Sociobiology, 60, 475-481.CrossRefGoogle Scholar
  16. Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song. Biological Themes and Variations. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  17. Cato, D. H. (2014). Shipping noise impacts on marine life. In Proceedings of the 43rd International Congress and Exposition on Noise Control Engineering (Internoise 2014): Improving the World Through Noise Control, Melbourne, VIC, Australia, November 16-19, 2014, vol. 1, pp. 418-423.Google Scholar
  18. Collins, M. D. (1993). A split-step Padé solution for the parabolic equation. The Journal of the Acoustical Society of America, 93, 1736-1742.CrossRefGoogle Scholar
  19. Cornick, L. A., & Markowitz, H. (2002). Diurnal vocal patterns of the black howler monkey (Alouatta pigra) at Lamanai, Belize. Journal of Mammalogy, 83(1), 159-166.CrossRefGoogle Scholar
  20. Dabelsteen, T., & Pedersen, S. B. (1988). Correspondence between messages in the full song of the blackbird Turdus merula and meanings to territorial males, as inferred from responses to computerized modifications of natural song. Zeitschrift für Tierpsychologie, 69(2), 149-165.CrossRefGoogle Scholar
  21. Dabelsteen, T., Larsen, O. N., & Pedersen, S. B. (1993). Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song. The Journal of the Acoustical Society of America, 93(4), 2206-2220.CrossRefGoogle Scholar
  22. Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21, 1079-1089.CrossRefPubMedGoogle Scholar
  23. Ellinger, N., & Hödl, W. (2003). Habitat acoustics of a neotropical lowland rainforest. Bioacoustics, 13(3), 297-321.CrossRefGoogle Scholar
  24. Embleton, T. F. W. (1996). Tutorial on sound propagation outdoors. The Journal of the Acoustical Society of America, 100(1), 31-48.CrossRefGoogle Scholar
  25. Fahy, F. (2003). Foundations of Engineering Acoustics. London: Elsevier Academic Press.Google Scholar
  26. Farcas, A., Thompson, P. M., & Merchant, N. D. (2016). Underwater noise modelling for environmental impact assessment. Environmental Impact Assessment Review, 57, 114-122.CrossRefGoogle Scholar
  27. Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Ultrasonic communication in frogs. Nature, 440, 333-336.CrossRefPubMedGoogle Scholar
  28. Ferris, R. H. (1972). Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water. The Journal of the Acoustical Society of America, 52(3), 981-988.CrossRefGoogle Scholar
  29. Garstang, M., Larom, D., Raspet, R., & Lindeque, M. (1995). Atmospheric controls on elephant communication. Journal of Experimental Biology, 198, 939-951.PubMedGoogle Scholar
  30. Gough, D. C., Mennill, D. J., & Nol, E. (2014). Singing seaside: Pacific wrens (Troglodytes pacificus) change their songs in the presence of natural and anthropogenic noise. Wilson Journal of Ornithology, 126(2), 269-278.CrossRefGoogle Scholar
  31. Goutte, S., Dubois, A., & Legendre, F. (2013).The importance of ambient sound level to characterise anuran habitat. PLoS ONE, 8(10): e78020. doi: https://doi.org/10.1371/journal.pone.0078020.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Halfwerk, W., Bot, S., & Slabbekoorn, H. (2012). Male great tit song perch selection in response to noise-dependent female feedback. Functional Ecology, 26, 1339-1347.CrossRefGoogle Scholar
  33. Hartbauer, M., Siegert, M. E., Fertschai, I., & Römer, H. (2012). Acoustic signal perception in a noisy habitat: lessons from synchronising insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 198, 397-409.CrossRefPubMedGoogle Scholar
  34. Heller, E. J. (2013). Why You Hear What You Hear. An Experimental Approach to Sound, Music, and Psychoacoustics. Princeton, NJ: Princeton University Press.Google Scholar
  35. Higgs, D. M., & Radford, C. A. (2016). The potential overlapping roles of the ear and lateral line in driving “acoustic” responses. In J. A. Sisneros (Ed.), Fish Hearing and Bioacoustics (pp. 255-270). New York: Springer International Publishing.Google Scholar
  36. Hill, R. D. (1985). Investigation of lightning strikes to water surfaces. The Journal of the Acoustical Society of America, 78, 2096-2099.CrossRefGoogle Scholar
  37. Holland, J., Dabelsteen, T., Pedersen, S. B., & Paris, A. L. (2001). Potential ranging cues contained within the energetic pauses of transmitted wren song. Bioacoustics, 12(1), 3-20.CrossRefGoogle Scholar
  38. International Electrotechnical Commission. (2013). Electroacoustics. Sound Level Meters, Part 2: Pattern Evaluation Tests IEC 61672-2, International Electrotechnical Commission, Geneva, Switzerland.Google Scholar
  39. International Standard Organization (ISO). (1993). Acoustics: Attenuation of Sound During Propagation Outdoors. Part 1: Calculation of the Absorption of Sound by the Atmosphere ISO 9613-1, International Standard Organization, Geneva, Switzerland. Available at https://www.iso.org/standard/17426.html.
  40. Jensen, K. K., Larsen, O. N., & Attenborough, K. (2008). Measurements and predictions of hooded crow (Corvus corone cornix) call propagation over open field habitats. The Journal of the Acoustical Society of America, 123(1), 507-518.CrossRefPubMedGoogle Scholar
  41. Larsson, C., Hallberg, B., & Israelsson, S. (1988). A method to estimate meteorological effects on sound propagation near the ground. Applied Acoustics, 25(1), 17-31.CrossRefGoogle Scholar
  42. Lengagne, T., & Slater, P. J. B. (2002). The effects of rain on acoustic communication: tawny owls have good reason for calling in less wet weather. Proceedings of the Royal Society B: Biological Sciences, 269, 2121-2125.CrossRefPubMedGoogle Scholar
  43. Lewis, J. K., & Denner, W. W. (1988). Arctic ambient noise in the Beaufort Sea: Seasonal relationships to sea ice kinematics. The Journal of the Acoustical Society of America, 83(2), 549-565.CrossRefGoogle Scholar
  44. Lillis, A., Eggleston, D. B., & Bohnenstiehl, D. R. (2014). Estuarine soundscapes: Distinct acoustic characteristics of oyster reefs compared to soft-bottom habitats. Marine Ecology Progress Series, 505, 1-17.CrossRefGoogle Scholar
  45. Locascio, J. V., & Mann, D. A. (2005). Effects of Hurricane Charley on fish chorusing. Biology Letters, 1, 362-365.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lohr, B., Wright, T. F., & Dooling, R. J. (2003). Detection and discrimination of natural calls in masking noise by birds: Estimating the active space of a signal. Animal Behaviour, 65, 763-777.CrossRefGoogle Scholar
  47. Luczkovich, J. J., Pullinger, R. C., Johnson, S. E., & Sprague, M. W. (2008). Identifying sciaenid critical spawning habitats by the use of passive acoustics. Transactions of the American Fisheries Society, 137, 576-605.CrossRefGoogle Scholar
  48. Luther, D. (2009). The influence of the acoustic community on songs of birds in a neotropical rain forest. Behavioral Ecology, 20, 864-871.CrossRefGoogle Scholar
  49. Luther, D., & Gentry, K. (2013). Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 150, 1045-1068.Google Scholar
  50. Marten, K., & Marler, P. (1977). Sound transmission and it significance for animal vocalization. I. Temperate habitats. Behavioral Ecology and Sociobiology, 2, 271-290.CrossRefGoogle Scholar
  51. McLaughlin, K. E., & Kunc, H. P. (2013). Experimentally increased noise levels change spatial and singing behaviour. Biology Letters, 9: 20120771.Google Scholar
  52. McNett, G. C., Luan, L. H., & Cocroft, R. B. (2010). Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behavioral Ecology and Sociobiology, 64, 2043-2051.CrossRefGoogle Scholar
  53. Medwin, H., & Clay, C. S. (1998). Fundamentals of Acoustical Oceanography. San Diego, CA: Academic Press.Google Scholar
  54. Meyer, J. (2015). Acoustic adaptation to natural environments. In J. Meyer, Whistled Languages: A Worldwide Inquiry About Human Whistled Speech (pp. 91-103). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  55. Michelsen, A., & Larsen, O. N. (1983). Strategies for Acoustic Communication in Complex Environments. In F. Huber & H. Markl (Eds.), Neuroethology and Behavioral Physiology (pp. 321-331). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  56. Morton, E. S. (1975). Ecological sources of selection of avian sounds. American Naturalist, 109, 17-34.CrossRefGoogle Scholar
  57. Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of a sound: Mechanisms and adaptations for long-range communication. Animal Behaviour 62, 825-837.CrossRefGoogle Scholar
  58. Narins, P. M., Feng, A. S., Lin, W., Schnitzler, H.-U., Denzinger, A., Suthers, A., & Xu, C. (2004). Old World frog and bird vocalizations contain prominent ultrasonic harmonics. The Journal of the Acoustical Society of America, 115(2), 910-913.CrossRefPubMedGoogle Scholar
  59. Nemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? American Naturalist, 176(4), 465-475.CrossRefPubMedGoogle Scholar
  60. Patricelli, G. L., & Blickley, J. L. (2006). Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk, 123(3), 639-649.CrossRefGoogle Scholar
  61. Penna, M., Llusia, D., & Márquez, R. (2012). Propagation of natural toad calls in a Mediterranean terrestrial environment. The Journal of the Acoustical Society of America, 132(6), 4025-4031.CrossRefPubMedGoogle Scholar
  62. Piercy, J. E., Embleton, T. F. W., & Sutherland, L. C. (1977). Review of noise propagation in the atmosphere. The Journal of the Acoustical Society of America, 61(6), 1403-1418.CrossRefPubMedGoogle Scholar
  63. Porter, M. B. (1992). The Kracken Normal Mode Program. Technical Report NRL/MR/5120-92-6920, Naval Research Laboratory, Washington, DC.Google Scholar
  64. Porter, M. B., & Liu, Y.-C. (1994). Finite-element ray tracing. Theoretical Computing Acoustics, 2, 947-956.Google Scholar
  65. Radford, C. A., Jeffs, A. G., Tindle, C. T., & Montgomery, J. C. (2008). Temporal patterns in ambient noise of biological origin from a shallow water temperate reef. Oecologia, 156, 921-929.CrossRefPubMedGoogle Scholar
  66. Radford, C. A., Stanley, J. A., Tindle, C. T., Montgomery, J. C., & Jeffs, A. G. (2010). Localised coastal habitats have distinct underwater sound signatures. Marine Ecology Progress Series, 401, 21-29.CrossRefGoogle Scholar
  67. Radford, C. A., Stanley, J. A., & Jeffs, A. G. (2014). Adjacent coral reef habitats produce different underwater sound signatures. Marine Ecology Progress Series, 505, 19-28.CrossRefGoogle Scholar
  68. Rogers, P. H., & Cox, M. (1988). Underwater sound as a biological stimulus. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory Biology of Aquatic Animals (pp. 131-149). New York: Springer-Verlag.CrossRefGoogle Scholar
  69. Römer, H., Bailey, W., & Dadour, I. (1989). Insect hearing in the field. III. Masking by noise. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 164, 609-620.CrossRefGoogle Scholar
  70. Schafer, R. M. (1993). The Soundscape: Our Sonic Environment and the Tuning of the World. Rochester, VT: Destiny Books.Google Scholar
  71. Schmidt, K. A., & Belinsky, K. L. (2013). Voices in the dark: Predation risk by owls influences dusk singing in a diurnal passerine. Behavioral Ecology and Sociobiology, 67, 1837-1843.CrossRefGoogle Scholar
  72. Slabbekoorn, H. (2004). Habitat-dependent ambient noise: Consistent spectral profiles in two African forest types. The Journal of the Acoustical Society of America, 116(6), 3727-3733.CrossRefPubMedGoogle Scholar
  73. Slabbekoorn, H. (2013). Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089-1099.CrossRefGoogle Scholar
  74. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5-e8.CrossRefGoogle Scholar
  75. Slabbekoorn, H., Ellers, J., & Smith, T. B. (2002). Birdsong and sound transmission: The benefits of reverberations. Condor, 104, 564-573.CrossRefGoogle Scholar
  76. Staaterman, E. R., Claverie, T., & Patek, S. N. (2010). Disentangling defense: the function of spiny lobster sounds. Behaviour, 147, 235-258.CrossRefGoogle Scholar
  77. Staaterman, E., Paris, C. B., DeFerrari, H. A., Mann, D. A., Rice, A. N., & Alessandro, E. K. (2014). Celestial patterns in marine soundscapes. Marine Ecology Progress Series, 508, 17-32.CrossRefGoogle Scholar
  78. Templeton, C. N., & Greene, E. (2007). Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5479-5482.CrossRefPubMedPubMedCentralGoogle Scholar
  79. van Oosterom, L., Montgomery, J. C., Jeffs, A. G., & Radford, C. A. (2016). Evidence for contact calls in fish: Conspecific vocalisations and ambient soundscape influence group cohesion in a nocturnal species. Scientific Reports, 6, 19098.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Weston, D. E. (1971). Intensity-range relations in oceanographic acoustics. Journal of Sound Vibration, 18, 271-287.CrossRefGoogle Scholar
  81. Wilcock, W. S. D., Stafford, K. M., Andrew, R. K., & Odom, R. I. (2014). Sounds in the ocean at 1-100 Hz. Annual Review of Marine Science, 6, 117-140.CrossRefPubMedGoogle Scholar
  82. Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69-94.CrossRefGoogle Scholar
  83. Wood, W. E., & Yezerinac, S. M. (2006). Song sparrow (Melospiza melodia) song varies with urban noise. The Auk, 123(3), 650-659.CrossRefGoogle Scholar
  84. Wysocki, L. E., Amoser, S., & Ladich, F. (2007). Diversity in ambient noise in European freshwater habitats: Noise levels, spectral profiles, and impact on fishes. The Journal of the Acoustical Society of America, 121(5), 2559-2566.CrossRefPubMedGoogle Scholar
  85. Yang, X.-J., Ma, X.-R., & Slabbekoorn, H. (2014).Timing vocal behaviour: Experimental evidence for song overlap avoidance in Eurasian wrens. Behavioural Processes, 103, 84-90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Leigh Marine LaboratoryInstitute of Marine Science, University of AucklandWarkworthNew Zealand

Personalised recommendations