Skip to main content

Characteristics of Temporary and Permanent Threshold Shifts in Vertebrates

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 66))

Abstract

Studies of noise-induced threshold shift to acoustic over exposure, conducted in the laboratory, employ a simple and rigorous paradigm. First, hearing is measured usually as a series of thresholds for pure tones distributed throughout the range of hearing. Then the subject is exposed to a loud sound, after which estimates of threshold are repeated. A difference between the pre- and postthreshold values represents the consequences of the sound exposure. From this approach, much is known about the effects of intense sound exposure on hearing. This chapter reviews the data on temporary and permanent threshold shifts. Examples of noise-induced threshold shift (NITS) are drawn from the extensive animal literature obtained from a mammal (chinchilla) and several avian (budgerigar and chicken chick) species. The conclusions from these examples is that when the parameters of exposure are well characterized and thresholds carefully determined, a set of reliable and valid observations on the magnitude and duration of NITS emerge. Most importantly, certain aspects of hearing loss appear to be consistent across species. Given that a set of repeatable patterns of NITS are known, it is suggested that meaningful predictions can be made on the susceptibility of hearing loss in wild animals exposed to noise in natural environments. This suggestion assumes that the parameters of the exposure such as the sound pressure level and duration are reasonably well-known. The validity of these estimates has limitations and these are also considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akay, A. (1978). A review of impact noise. The Journal of the Acoustical Society of America, 64, 977–987.

    Article  Google Scholar 

  • Borg, E., Canlon, B., & Engström, B. (1995). Noise-induced hearing loss, literature review and experiments in rabbits. Morphology and electrophysiological features, exposure parameters, and temporal factors and interactions. Scandinavian Audiology Supplementum, 40, 1–147.

    PubMed  CAS  Google Scholar 

  • Busnel, R.-G. (1978). Introduction. In J. L. Fletcher & R.-G. Busnel (Eds.), The Effects of Noise on Wildlife (pp. 7–22). New York: Academic Press.

    Chapter  Google Scholar 

  • Carder, H. M., & Miller, J. D. (1972). Temporary threshold shifts from prolonged exposure to noise. Journal of Speech, Language, and Hearing Research, 15, 603–623.

    Article  CAS  Google Scholar 

  • Chen, G.-D. C., Decker, B., Prakash, V., Muthaiah, K., Sheppard, A., & Salvi, R. (2014). Prolonged noise exposure-induced auditory threshold shifts in rats. Hearing Research, 317, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, W. W. (1991). Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. The Journal of the Acoustical Society of America, 90, 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Conlee, J. W., Abdul-Baqi, K. J., McCandless, G. A., & Creel, D. J. (1986). Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hearing Research, 23, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R. R. (2006). Acoustic measurement: A tutorial for molecular biologists. Brain Research, 1091, 32–39.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R. R. Newlander, J. K., Ling, X. B., Cortopassi, G. A., Kreig, E. F., & Erway, L. C. (2001). Genetic basis for susceptibility to noise-induced hearing loss in mice. Hearing Research, 155, 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Dooling, R. J, & Saunders, J. C. (1975). Hearing in the parakeet (Melopsittacus undulatus): Absolute thresholds, critical ratios, frequency difference limens and vocalizations. Journal of Comparative and Physiological Psychology, 88, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Dooling, R. J., West, E. W., & Leek, M. R. (2009). Conceptual and computational models of the effects of anthropogenic noise on birds. Paper presented at the 5th International Conference on Bioacoustics 2009, Holywell Park, UK, March 31 to April 2, 2009. Proceedings of the Institute of Acoustics, 31, 99–106.

    Google Scholar 

  • Duan, M., Laurell, G., Qiu, J., & Borg, E. (2008). Susceptibility to impulse noise trauma in different species: Guinea pig, rat, mouse. Acta Oto-Laryngologica, 128, 277–283.

    Article  PubMed  Google Scholar 

  • Finneran, J. J. (2015). Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996–2015. The Journal of the Acoustical Society of America, 138, 1702–1726.

    Article  PubMed  Google Scholar 

  • Fleisher, G. (1978). Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology, 55, 1–70.

    Google Scholar 

  • Harvey, R. G., & ter Haar, G. (2016). Noise-induced hearing loss. In R. G. Harvey & G. ter Haar (Eds.), Ear, Nose and Throat Diseases of the Dog and Cat (pp. 214–215). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Heffner, H. E., & Koay, G. (2005). Tinnitus and hearing loss in hamsters (Mesocricetus auratus) exposed to loud sound. Behavioral Neuroscience, 119, 734–742.

    Article  PubMed  Google Scholar 

  • Henderson, D., & Hamernik, R. P. (1986). Impulse noise: Critical review. The Journal of the Acoustical Society of America, 80, 569–584.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, D., Subramaniam, M., & Gratton, M. A. (1991). Impact noise: The importance of level, duration, and repetition rate. The Journal of the Acoustical Society of America, 89, 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, D., Subramaniam, M., & Boettcher, F. A. (1993). Individual susceptibility to noise-induced hearing loss: An old topic revisited. Ear and Hearing, 14, 152–168.

    Article  CAS  PubMed  Google Scholar 

  • Hood, J. D. (1956). Fatigue and adaptation of hearing. British Medical Bulletin, 12, 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Köppl, C. (2011). Birds - same thing but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273, 65–71.

    Article  PubMed  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding injury to insult: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29, 14,077–14,085.

    Article  CAS  Google Scholar 

  • Mason, M. J. (2013). Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals. Hearing Research, 301, 4–18.

    Article  PubMed  Google Scholar 

  • McFadden, E. A., & Saunders, J. C. (1989). Recovery of auditory function following intense sound exposure in the neonatal chick. Hearing Research, 41, 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Melnick, W. (1990). Human temporary threshold shift (TTS) and damage risk. The Journal of the Acoustical Society of America, 90, 147–154.

    Article  Google Scholar 

  • Miller, J. D., Watson, C. S., & Covell, W. P. (1963). Deafening effects of noise on the cat. Acta Oto-Laryngology, Supplement, 176, 1–91.

    Google Scholar 

  • Mills, J. H. (1973). Temporary and permanent threshold shifts produced by nine-day exposures to noise. Journal of Speech and Hearing Research, 16, 426–438.

    Article  CAS  PubMed  Google Scholar 

  • Mills, J. H. (1976). Threshold shifts produced by a 90-day exposure to noise. In D. Henderson, R. Hammernick, D. S. Dosanjh, & J. H. Mills (Eds.), Effects of Noise on Hearing (pp. 265–275). New York: Raven Press.

    Google Scholar 

  • Mills, J. H., & Talo, S. A. (1972). Temporary threshold shift produced by exposures to high frequency noise. Journal of Speech and Hearing Research, 15, 624–631.

    Article  CAS  PubMed  Google Scholar 

  • Moody, D. B., Sebbins, W. C., Johnsson, L. G., & Hawkins, J. E., Jr. (1976). Noise-induced hearing loss in the monkey. In D. Henderson, R. P. Hammernick, D. S. Dosanjh, & J. H. Mills (Eds.), Effects of Noise on Hearing (pp. 309–325). New York: Raven Press.

    Google Scholar 

  • Ou, H. C., Bohne, B. A., & Harding, G. W. (2000). Noise damage in the C57BL/CBA mouse. Hearing Research, 145, 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Pugliano, F. A., Wilcox, T. O., Rossiter, J., & Saunders, J. C. (1993). Recovery of auditory structure and function in neonatal chicks exposed to intense sound for 8 days. Neuroscience Letters, 151, 214–218.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz, P. M (2012). The public health significance of noise-induced hearing loss. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss: Scientific Advances (pp. 13–25). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ramamoorthy, S, & Nuttall, A. L. (2012). Half-octave shift in mammalian hearing is an epiphenomenon of the cochlear amplifier. PLoS ONE, 7, e45640. doi:https://doi.org/10.1371/journal.pone.0045640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberto, M, Hamernik, R. P, Salvi, R. J, Henderson, D, & Milone, R (1985). Impact noise and the equal energy hypothesis. The Journal of the Acoustical Society of America, 77, 1514–1520.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, B. M., Dooling, R. J., Westbrook, E., Dent, M. L., MacKenzie, A., & Larsen, O. N. (1999). Avian species differences in susceptibility to noise exposure. Hearing Research, 131, 71–88.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, A., & Bone, R. C. (1978). Noise-induced threshold shift and cochlear pathology in the Mongolian gerbil. The Journal of the Acoustical Society of America, 63, 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  • Salvi, R., Lobarinas, E., Chen, G. D., Stolzberg, D., & Ding, D. (2011). Animal models of hearing loss and tinnitus. In J. Hau & S. Y. Schapiro (Eds.), Animal Models. Handbook of Laboratory Animal Science, vol. II 3rd ed. (pp. 419–453). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Salvi, R. J., Henderson, D., Hamernik, R. P., & Coletti, V. (1986). Basic and Applied Aspects of Noise-Induced Hearing Loss. New York: Plenum Press.

    Book  Google Scholar 

  • Saunders, J. C. (1985). Auditory structure and function in the bird middle ear: An evaluation by SEM and capacitive probe. Hearing Research, 18, 253–268.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, J. C. (2010). The role of hair cell regeneration in an avian model of inner ear injury and repair from acoustic trauma. Institute for Laboratory Animal Research Journal, 51, 326–337.

    Article  CAS  Google Scholar 

  • Saunders, J. C., & Dooling, R. J. (1974). Noise-induced threshold shift in the parakeet (Melopsittacus undulatus). Proceedings of the National Academy of Sciences of the United States of America, 71, 1962–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders, J. C., & Rosowski, J. J. (1979). The assessment of hearing in animals. In W. F. Rintlemann (Ed.), The Assessment of Hearing (pp. 487–529). Baltimore, MD: University Park Press.

    Google Scholar 

  • Saunders, J. C., & Dear, S. P. (1983). Comparative morphology of stereocilia. In R. R. Fay and G. Gourevitch (Eds.), Essays on Hearing in Honor of E. G. Wever (pp. 175–197). Groton, CT: Amphora Press.

    Google Scholar 

  • Saunders, J. C., Mills, J. H., & Miller, J. C. (1977). Threshold shift in chinchilla from daily exposure to noise for six hours The Journal of the Acoustical Society of America, 61, 558–570.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, J. C., Dear, S. P., & Schneider, M. (1985a). The anatomical consequences of acoustic trauma: a review and tutorial. The Journal of the Acoustical Society of America, 78, 833–860.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, J. C., Schneider, M. E., & Dear, S. P. (1985b). The structure and function of actin in hair cells. The Journal of Acoustical Society of America, 78, 299–311.

    Article  CAS  Google Scholar 

  • Saunders, J. C., Cohen, Y. E., & Szymko, Y. M. (1991). The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: A five year update. The Journal of the Acoustical Society of America, 90, 136–146.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, J. C., Torsiglieri, A. J., & DeDio, R. M. (1993). The growth of hearing loss in neonatal chicks exposed to intense pure tones. Hearing Research, 69, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Spassova, M. A., Avissar, M., Furman, A. C., Crumling, M. A., Saunders, J. C., & Parsons, T. D. (2004). Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse. Journal of the Association for Research in Otolaryngology, 5, 376–390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Syka, J., & Popelár, J. (1980). Hearing threshold shifts from prolonged exposure to noise in guinea pigs. Hearing Research, 3, 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, W, Pearson, J, Mair, A, & Burns, W. (1965). Study of noise and hearing in jute weaving. The Journal of the Acoustical Society of America, 38, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Tontechnik-Recher-sengplielaudio. (2016). How Does the Sound or Noise Depend on Distance from the Source? Audio Tutorial, Tonmeister Institut. Available at http://www.sengpielaudio.com/calculator-SoundAndDistance.htm. Accessed December 22, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Dooling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saunders, J.C., Dooling, R.J. (2018). Characteristics of Temporary and Permanent Threshold Shifts in Vertebrates. In: Slabbekoorn, H., Dooling, R., Popper, A., Fay, R. (eds) Effects of Anthropogenic Noise on Animals. Springer Handbook of Auditory Research, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8574-6_4

Download citation

Publish with us

Policies and ethics