Advertisement

Principles of Auditory Object Formation by Nonhuman Animals

  • Micheal L. DentEmail author
  • Mark A. Bee
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)

Abstract

Early in the twentieth century, the Gestalt psychologists outlined principles governing the ability of the human visual system to construct integrated percepts of objects in visual scenes. By the close of the twentieth century, ample evidence suggested that the human auditory system follows similar principles of perceptual organization. Several Gestalt principles of grouping—proximity, similarity, common fate, good continuation, and familiarity, govern our ability to decompose complex mixtures of sounds into percepts of auditory objects in acoustic scenes. Auditory objects are perceptual groupings of sounds generated by the same source that are present at different times and in different parts of the frequency spectrum. The ability to form auditory objects likely plays an important role in allowing animals to navigate human-altered soundscapes. This chapter reviews studies of insects, fish, frogs, birds, and nonhuman mammals in which experimenters manipulated potential grouping cues and measured performance on behavioral tasks designed to reveal the animal’s perception of auditory objects. These studies employed techniques ranging from measuring natural behaviors in response to communication signals to operant conditioning of responses to artificial sounds such as pure tones. The totality of the studies reviewed here unequivocally reveals that nonhuman animals not only form auditory objects but that they also follow the Gestalt principles of grouping. These principles and their underlying mechanisms allow animals to perceptually organize the often noisy and complex acoustic environments in which they live.

Keywords

Auditory illusions Comparative psychoacoustics Complex sound perception Operant conditioning Phonotaxis Stream segregation Temporal induction 

Notes

Compliance with Ethics Requirements

Micheal L. Dent declares that she has no conflict of interest.

Mark A. Bee declares that he has no conflict of interest.

References

  1. American National Standards Institute (ANSI). (2013). American National Standard Acoustical Terminology. ANSI S1.1, American National Standards Institute for the Acoustical Society of America, Washington, DC.Google Scholar
  2. Barber, J., Razak, K., & Fuzessery, Z. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(11), 843–855.CrossRefPubMedGoogle Scholar
  3. Baugh, A. T., Ryan, M. J., Bernal, X. E., Rand, A. S., & Bee, M. A. (2016). Female túngara frogs do not experience the continuity illusion. Behavioral Neuroscience, 130(1), 62–74.CrossRefPubMedGoogle Scholar
  4. Bee, M. A. (2010). Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). Journal of Comparative Psychology, 124(4), 412–424.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bee, M. A. (2012). Sound source perception in anuran amphibians. Current Opinion in Neurobiology, 22(2), 301–310.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bee, M. A. (2015). Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. International Journal of Psychophysiology, 95(2), 216–237.CrossRefPubMedGoogle Scholar
  7. Bee, M. A. (2016). Social recognition in anurans. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 169–221). New York: Springer International Publishing.CrossRefGoogle Scholar
  8. Bee, M. A., & Klump, G. M. (2004). Primitive auditory stream segregation: A neurophysiological study in the songbird forebrain. Journal of Neurophysiology, 92(2), 1088–1104.CrossRefPubMedGoogle Scholar
  9. Bee, M. A., & Klump, G. M. (2005). Auditory stream segregation in the songbird forebrain: Effects of time intervals on responses to interleaved tone sequences. Brain, Behavior and Evolution, 66(3), 197–214.CrossRefPubMedGoogle Scholar
  10. Bee, M. A., & Riemersma, K. K. (2008). Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Animal Behaviour, 76(3), 831–843.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bee, M. A., & Miller, C. T. (2016). Signaler and receiver psychology. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 1–16). New York: Springer International Publishing.CrossRefGoogle Scholar
  12. Bee, M. A., Micheyl, C., Oxenham, A. J., & Klump, G. M. (2010). Neural adaptation to tone sequences in the songbird forebrain: Patterns, determinants, and relation to the build-up of auditory streaming. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196(8), 543–557.CrossRefPubMedGoogle Scholar
  13. Benney, K. S., & Braaten, R. F. (2000). Auditory scene analysis in Estrildid finches (Taeniopygia guttata and Lonchura striata domestica): A species advantage for detection of conspecific song. Journal of Comparative Psychology, 114(2), 174–182.CrossRefPubMedGoogle Scholar
  14. Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693–707.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Braaten, R. F., & Hulse, S. H. (1993). Perceptual organization of auditory temporal patterns in European starlings (Sturnus vulgaris). Perception & Psychophysics, 54(5), 567–578.CrossRefGoogle Scholar
  16. Braaten, R. F., & Leary, J. C. (1999). Temporal induction of missing birdsong segments in European starlings. Psychological Science, 10(2), 162–166.CrossRefGoogle Scholar
  17. Bregman, A. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.Google Scholar
  18. Bush, S. L., Gerhardt, H. C., & Schul, J. (2002). Pattern recognition and call preferences in treefrogs (Anura: Hylidae): A quantitative analysis using a no-choice paradigm. Animal Behaviour, 63(1), 7–14.CrossRefGoogle Scholar
  19. Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.CrossRefPubMedGoogle Scholar
  20. Christison-Lagay, K. L., & Cohen, Y. E. (2014). Behavioral correlates of auditory streaming in rhesus macaques. Hearing Research, 309, 17–25.CrossRefPubMedGoogle Scholar
  21. Darwin, C. J. (2008). Spatial hearing and perceiving sources. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory Perception of Sound Sources (pp. 215–232). New York: Springer US.Google Scholar
  22. Darwin, C. J., & Carlyon, R. P. (1995). Auditory grouping. In B. C. J. Moore (Ed.), The Handbook of Perception and Cognition, Vol. 6: Hearing (pp. 387–424). New York: Academic Press.Google Scholar
  23. Dent, M. L., Martin, A. K., Flaherty, M. M., & Neilans, E. G. (2016). Cues for auditory stream segregation of birdsong in budgerigars and zebra finches: Effects of location, timing, amplitude, and frequency. The Journal of the Acoustical Society of America, 139(2), 674–683.CrossRefPubMedGoogle Scholar
  24. Dolležal, L.-V., Itatani, N., Gunther, S., & Klump, G. M. (2012). Auditory streaming by phase relations between components of harmonic complexes: A comparative study of human subjects and bird forebrain neurons. Behavioral Neuroscience, 126(6), 797–808.CrossRefPubMedGoogle Scholar
  25. Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Farris, H. E., & Ryan, M. J. (2011). Relative comparisons of call parameters enable auditory grouping in frogs. Nature Communications, 2, 410.CrossRefPubMedGoogle Scholar
  27. Farris, H. E., & Taylor, R. C. (2016). Mate searching animals as model systems for understanding perceptual grouping. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 89–118). New York: Springer International Publishing.CrossRefGoogle Scholar
  28. Farris, H. E., Rand, A. S., & Ryan, M. J. (2002). The effects of spatially separated call components on phonotaxis in túngara frogs: Evidence for auditory grouping. Brain, Behavior and Evolution, 60(3), 181–188.CrossRefPubMedGoogle Scholar
  29. Farris, H., Rand, A. S., & Ryan, M. J. (2005). The effects of time, space and spectrum on auditory grouping in túngara frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1173–1183.CrossRefPubMedGoogle Scholar
  30. Fay, R. R. (1998). Auditory stream segregation in goldfish (Carassius auratus). Hearing Research, 120(1), 69–76.CrossRefPubMedGoogle Scholar
  31. Fay, R. R. (2000). Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus). Journal of the Association for Research in Otolaryngology, 1(2), 120–128.Google Scholar
  32. Fay, R. R. (2008). Sound source perception and stream segregation in nonhuman vertebrate animals. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory Perception of Sound Sources (pp. 307–323), New York: Springer US.Google Scholar
  33. Fay, R. R., & Popper, A. N. (2000). Evolution of hearing in vertebrates: The inner ears and processing. Hearing Research, 149(1–2), 1–10.CrossRefPubMedGoogle Scholar
  34. Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (2001). Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research, 151(1), 167–187.CrossRefPubMedGoogle Scholar
  35. Fishman, Y. I., Arezzo, J. C., & Steinschneider, M. (2004). Auditory stream segregation in monkey auditory cortex: Effects of frequency separation, presentation rate, and tone duration. The Journal of the Acoustical Society of America, 116(3), 1656–1670.CrossRefPubMedGoogle Scholar
  36. Gerhardt, H. C. (2005). Acoustic spectral preferences in two cryptic species of grey treefrogs: Implications for mate choice and sensory mechanisms. Animal Behaviour, 70(1), 39–48.CrossRefGoogle Scholar
  37. Gerhardt, H. C., & Huber, F. (2002). Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. Chicago, IL: The University of Chicago Press.Google Scholar
  38. Gerhardt, H. C., Martínez-Rivera, C. C., Schwartz, J. J., Marshall, V. T., & Murphy, C. G. (2007). Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). Journal of Experimental Biology, 210(17), 2990–2998.CrossRefPubMedGoogle Scholar
  39. Goldstein, E. B. (2010). Introduction to perception. In Sensation and Perception (pp. 3–20). Belmont, CA: Wadsworth Cengage Learning.Google Scholar
  40. Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.CrossRefPubMedGoogle Scholar
  41. Hartmann, W. M., & Johnson, D. (1991). Stream segregation and peripheral channeling. Music Perception: An Interdisciplinary Journal, 9(2), 155–183.CrossRefGoogle Scholar
  42. Hulse, S. H. (2002). Auditory scene analysis in animal communication. Advances in the Study of Behavior, 31, 163–200.CrossRefGoogle Scholar
  43. Hulse, S. H., MacDougall-Shackleton, S. A., & Wisniewski, A. B. (1997). Auditory scene analysis by songbirds: Stream segregation of birdsong by European starlings (Sturnus vulgaris). Journal of Comparative Psychology, 111(1), 3–13.CrossRefPubMedGoogle Scholar
  44. Itatani, N., & Klump, G. M. (2009). Auditory streaming of amplitude-modulated sounds in the songbird forebrain. Journal of Neurophysiology, 101(6), 3212–3225.CrossRefPubMedGoogle Scholar
  45. Itatani, N., & Klump, G. M. (2011). Neural correlates of auditory streaming of harmonic complex sounds with different phase relations in the songbird forebrain. Journal of Neurophysiology, 105(1), 188–199.CrossRefPubMedGoogle Scholar
  46. Itatani, N., & Klump, G. M. (2014). Neural correlates of auditory streaming in an objective behavioral task. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10738–10743.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Izumi, A. (2002). Auditory stream segregation in Japanese monkeys. Cognition, 82(3), B113-B122.CrossRefPubMedGoogle Scholar
  48. Klump, G. M. (2016). Perceptual and neural mechanisms of auditory scene analysis in the European starling. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 57–88). New York: Springer International Publishing.CrossRefGoogle Scholar
  49. Klump, G. M., Fichtel, C., Hamann, I., & Langemann, U. (1999). Filling in the gap: Evidence for apparent continuity in the songbird auditory system. ARO Midwinter Research Meeting, Abstract 108.Google Scholar
  50. Kobayasi, K. I., Usami, A., & Riquimaroux, H. (2012). Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus). The Journal of the Acoustical Society of America, 132(6), 4063–4068.CrossRefPubMedGoogle Scholar
  51. Ma, L., Micheyl, C., Yin, P., Oxenham, A. J., & Shamma, S. A. (2010). Behavioral measures of auditory streaming in ferrets (Mustela putorius). Journal of Comparative Psychology, 124(3), 317–330.CrossRefPubMedPubMedCentralGoogle Scholar
  52. MacDougall-Shackleton, S. A., Hulse, S. H., Gentner, T. Q., & White, W. (1998). Auditory scene analysis by European starlings (Sturnus vulgaris): Perceptual segregation of tone sequences. The Journal of the Acoustical Society of America, 103(6), 3581–3587.CrossRefPubMedGoogle Scholar
  53. Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology 11(4), 709–724.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Micheyl, C., Carlyon, R. P., Shtyrov, Y., Hauk, O., Dodson, T., & Pullvermüller, F. (2003). The neurophysiological basis of the auditory continuity illusion: A mismatch negativity study. Journal of Cognitive Neuroscience, 15(5), 747–758.CrossRefPubMedGoogle Scholar
  55. Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.CrossRefPubMedGoogle Scholar
  56. Middlebrooks, J. C., & Onsan, Z. A. (2012). Stream segregation with high spatial acuity. The Journal of the Acoustical Society of America, 132(6), 3896–3911.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Middlebrooks, J. C., & Bremen, P. (2013). Spatial stream segregation by auditory cortical neurons. The Journal of Neuroscience, 33(27), 10986–11001.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miller, C. T., & Bee, M. A. (2012). Receiver psychology turns 20: Is it time for a broader approach? Animal Behaviour, 83(2), 331–343.CrossRefPubMedGoogle Scholar
  59. Miller, C. T., Dibble, E., & Hauser, M. D. (2001). Amodal completion of acoustic signals by a nonhuman primate. Nature Neuroscience, 4(8), 783–784.CrossRefPubMedGoogle Scholar
  60. Moss, C. F., & Surlykke, A. (2001). Auditory scene analysis by echolocation in bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226.CrossRefPubMedGoogle Scholar
  61. Neilans, E. G., & Dent, M. L. (2015a). Temporal coherence for pure tones in budgerigars (Melopsittacus undulatus) and humans (Homo sapiens). Journal of Comparative Psychology, 129(1), 52–61.CrossRefPubMedGoogle Scholar
  62. Neilans, E. G., & Dent, M. L. (2015b). Temporal coherence for complex signals in budgerigars (Melopsittacus undulatus) and humans (Homo sapiens). Journal of Comparative Psychology, 129(2), 174–180.CrossRefPubMedGoogle Scholar
  63. Nityananda, V., & Bee, M. A. (2011). Finding your mate at a cocktail party: Frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses. PLoS ONE, 6(6), e21191.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Noto, M., Nishikawa, J., & Tateno, T. (2016). An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex. Neuroscience, 318, 58–83.CrossRefPubMedGoogle Scholar
  65. Palmer, S. E. (2002). Perceptual organization in vision. In H. Pashler & S. Yantis (Eds.), Stevens’ Handbook of Experimental Psychology, Vol. 1: Sensation and Perception, 3rd ed. (pp. 177–234). New York: John Wiley & Sons.Google Scholar
  66. Park, T. J., & Dooling, R. J. (1991). Sound localization in small birds: Absolute localization in azimuth. Journal of Comparative Psychology, 105(2), 125–133.CrossRefPubMedGoogle Scholar
  67. Petkov, C. I., & Sutter, M. L. (2011). Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration. Hearing Research, 271(1), 54–65.CrossRefPubMedGoogle Scholar
  68. Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2003). Illusory sound perception in macaque monkeys. The Journal of Neuroscience, 23(27), 9155–9161.CrossRefPubMedGoogle Scholar
  69. Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2007). Encoding of illusory continuity in primary auditory cortex. Neuron, 54(1), 153–165.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Populin, L. C., & Yin, T. C. (1998). Behavioral studies of sound localization in the cat. The Journal of Neuroscience, 18(6), 2147–2160.CrossRefPubMedGoogle Scholar
  71. Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18(15), 1124–1128.CrossRefPubMedGoogle Scholar
  72. Römer, H. (2013). Masking by noise in acoustic insects: Problems and solutions. In H. Brumm (Ed.), Animal Communication and Noise (pp. 33–63). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  73. Scholes, C., Palmer, A. R., & Sumner, C. J. (2015). Stream segregation in the anesthetized auditory cortex. Hearing Research, 328, 48–58.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Schul, J., & Sheridan, R. (2006). Auditory stream segregation in an insect. Neuroscience, 138(1), 1–4.CrossRefPubMedGoogle Scholar
  75. Schwartz, J. J., & Gerhardt, H. C. (1995). Directionality of the auditory system and call pattern recognition during acoustic interference in the gray treefrog, Hyla versicolor. Auditory Neuroscience, 1, 195–206.Google Scholar
  76. Schwartz, J. J., Huth, K., Jones, S. H., Brown, R., & Marks, J. (2010). Tests for call restoration in the gray treefrog, Hyla versicolor. Bioacoustics, 20, 59–86.CrossRefGoogle Scholar
  77. Seeba, F., & Klump, G. M. (2009). Stimulus familiarity affects perceptual restoration in the European starling (Sturnus vulgaris). PLoS ONE, 4(6), e5974.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Seeba, F., Schwartz, J. J., & Bee, M. A. (2010). Testing an auditory illusion in frogs: Perceptual restoration or sensory bias? Animal Behaviour, 79(6), 1317–1328.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Selezneva, E., Gorkin, A., Mylius, J., Noesselt, T., Scheich, H., & Brosch, M. (2012). Reaction times reflect subjective auditory perception of tone sequences in macaque monkeys. Hearing Research, 294(1), 133–142.CrossRefPubMedGoogle Scholar
  80. Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.CrossRefPubMedGoogle Scholar
  81. Stebbins, W. C. (1973) Hearing of old world monkeys (Cercopithecinae). American Journal of Physical Anthropology, 38(2), 357–364.CrossRefPubMedGoogle Scholar
  82. Sugita, Y. (1997). Neuronal correlates of auditory induction in the cat cortex. Neuroreport, 8(5), 1155–1159.CrossRefPubMedGoogle Scholar
  83. van Noorden, L. P. A. S. (1975). Temporal Coherence in the Perception of Tone Sequences. Unpublished doctoral dissertation, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands.Google Scholar
  84. von Helversen, D. (1984). Parallel processing in auditory pattern recognition and directional analysis by the grasshopper Chorthippus biguttulus L.(Acrididae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 154(6), 837–846.CrossRefGoogle Scholar
  85. Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012a). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172–1217.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012b). A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138(6), 1218–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(3917), 392–393.CrossRefPubMedGoogle Scholar
  88. Warren, R. M. (1984). Perceptual restoration of obliterated sounds. Psychological Bulletin, 96(2), 371–383.CrossRefPubMedGoogle Scholar
  89. Weber, T., & Thorson, J. (1988). Auditory behavior of the cricket. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 163(1), 13–22.CrossRefGoogle Scholar
  90. Wisniewski, A. B., & Hulse, S. H. (1997). Auditory scene analysis in European starlings (Sturnus vulgaris): Discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. Journal of Comparative Psychology, 111(4), 337–350.CrossRefGoogle Scholar
  91. Yao, J. D., Bremen, P., & Middlebrooks, J. C. (2015). Emergence of spatial stream segregation in the ascending auditory pathway. The Journal of Neuroscience, 35(49), 16199–16212.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yost, W. A., Popper, A. N., & Fay, R. R. (Eds.). (2008) Auditory Perception of Sound Sources. New York: Springer US.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity at Buffalo, State University of New York (SUNY)BuffaloUSA
  2. 2.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations