Communication Masking by Man-Made Noise

  • Robert J. DoolingEmail author
  • Marjorie R. Leek
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)


Conservationists and regulators are often challenged with determining the masking effects of man-made sound introduced into the environment. A considerable amount is known from laboratory studies of auditory masking of communication signals in birds, so that it is now feasible to develop a functional model for estimating the masking effects of noise on acoustic communication in natural environments not only for birds but for other animals as well. Broadband noise can affect the detection, discrimination, and recognition of sounds and whether acoustic communication is judged comfortable or challenged. Estimates of these effects can be obtained from a simple measure called the critical ratio. Critical ratio data are available in both humans and a wide variety of other animals. Because humans have smaller critical ratios (i.e., hear better in noise) than other animals, human listeners can be used as a crude proxy for estimating the limits of effects on animals. That is, if a human listener can barely hear a signal in noise in the environment, it is unlikely that an animal can hear it. The key to estimating the amount of masking from noise that can occur in animals in their natural habitats is in measuring or estimating the signal and noise levels precisely at the animal’s ears in complex environments. Once that is done, a surprising amount of comparative laboratory critical ratio data exists, especially for birds, from which it is possible to predict the effect of noise on acoustic communication. Although best developed for birds, these general principles should hold for all animals.


Comfortable communication Critical ratios Detection Discrimination Masking Recognition Signal-to-noise ratio 



This work was supported in part by National Institutes of Health grants to Robert J. Dooling and a Senior Research Career Scientist Award from the Department of Veterans Affairs Rehabilitation Research and Development Service to Marjorie R. Leek. The contents of this chapter do not represent the views of the Department of Veterans Affairs or the US Government.

Requirement Compliance with Ethics

Robert J. Dooling declares that he has no conflict of interest.

Marjorie R. Leek declares that she has no conflicts of interest.


  1. American National Standards Institute (ANSI). (1999). Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms. ANSI S3.1-1999 R2013, American National Standards Institute, Washington, DC.Google Scholar
  2. American National Standards Institute (ANSI). (2013). American National Standard Acoustical Terminology: Acoustic Terminology. ANSI S1-1-2013, American National Standards Institute, Washington, DC.Google Scholar
  3. Arbogast T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. The Journal of the Acoustical Society of America, 112, 2086-2098.CrossRefPubMedGoogle Scholar
  4. Barber, J. R., Razak, K. A., & Fuzessery, Z. M. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(11), 843-855.CrossRefPubMedGoogle Scholar
  5. Bee, M. A., & Klump, G. M. (2005). Auditory stream segregation in the songbird forebrain: Effects of time intervals on responses to interleaved tone sequences. Brain, Behavior and Evolution, 66(3), 197-214.CrossRefPubMedGoogle Scholar
  6. Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122(3), 235-251.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blumenrath, S. H. (2011). Communicating in Social Networks: Effects of Reverberation on Acoustic Information Transfer in Three Species of Birds. Digital Repository at the University of Maryland, College Park, MD.Google Scholar
  8. Blumenrath, S. H., & Dabelsteen, T. (2004). Sound degradation before and after foliation: Implications for acoustic communication in a deciduous forest. Behaviour, 141, 935-958.CrossRefGoogle Scholar
  9. Brackenbury, J. H. (1979). Power capabilities of the avian sound producing system. Journal of Experimental Biology, 78, 163-166.Google Scholar
  10. Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.Google Scholar
  11. Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244-249.CrossRefPubMedGoogle Scholar
  12. Brenowitz, E. A. (1982). The active space of red-winged blackbird song. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 147(4), 511-522.CrossRefGoogle Scholar
  13. Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica, 86, 117-128.Google Scholar
  14. Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73(3), 434-440.CrossRefGoogle Scholar
  15. Brumm, H. (2013). Animal Communication in Noise. New York: Springer-Verlag.CrossRefGoogle Scholar
  16. Brumm, H., & Todt, D. (2002). Noise-dependent song amplitude regulation in a territorial songbird. Animal Behaviour, 63(5), 891-897.CrossRefGoogle Scholar
  17. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151-209.CrossRefGoogle Scholar
  18. Brumm, H., & Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour, 148, 1173-1198.CrossRefGoogle Scholar
  19. Cynx, J., Lewis, R., Tavel, B., & Tse, H. (1998). Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Animal Behaviour, 56(1), 107-113.CrossRefPubMedGoogle Scholar
  20. Dabelsteen, T. (2005). Public, private or anonymous? Facilitating and countering eavesdropping. In P. K. McGregor (Ed.), Animal Communication Networks (pp. 38-62). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  21. Dabelsteen, T., Larsen, O. N., & Pedersen, S. B. (1993). Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song. The Journal of the Acoustical Society of America, 93(4), 2206-2220.CrossRefGoogle Scholar
  22. Dent, M. L., Larsen, O. N., & Dooling, R. J. (1997). Free-field binaural unmasking in budgerigars (Melopsittacus undulatus). Behavioral Neuroscience, 111(3), 590-598.CrossRefPubMedGoogle Scholar
  23. Dooling, R. J. (1982). Auditory perception in birds. In D. E. Kroodsma & E. H. Miller (Eds.), Acoustic Communication in Birds (pp. 95-130). New York: Elsevier.CrossRefGoogle Scholar
  24. Dooling, R. J., & Saunders, J. C. (1975). Hearing in the parakeet: Absolute thresholds, critical ratios, frequency difference limens, and vocalizations. Journal of Comparative and Physiological Psychology, 88, 1-20.CrossRefPubMedGoogle Scholar
  25. Dooling, R. J., & Blumenrath, S. H. (2013). Avian sound perception in noise. In H. Brumm (Ed.), Animal Communication in Noise (pp. 229-250). New York: Springer-Verlag.CrossRefGoogle Scholar
  26. Dooling, R. J., & Blumenrath, S. H. (2016). Masking experiments in humans and birds using anthropogenic noises. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 239-243). New York: Springer-Verlag.CrossRefGoogle Scholar
  27. Dooling, R. J., & Popper, A. N. (2016). Technical Guidance for Assessment and Mitigation of the Effects of Highway and Road Construction Noise on Birds. Division of Environmental Analysis, California Department of Transportation, Sacramento.Google Scholar
  28. Dooling, R. J., Lohr, B., & Dent, M. L. (2000). Hearing in birds and reptiles. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative Hearing: Birds and Reptiles (pp. 308-359). New York: Springer-Verlag.CrossRefGoogle Scholar
  29. Dooling, R. J., Leek, M. R., & West, E. (2009). Predicting the effects of masking noise on communication distance in birds. The Journal of the Acoustical Society of America, 125(4), 2517.CrossRefGoogle Scholar
  30. Fay, R. R. (1988). Hearing in Vertebrates: A Psychophysical Databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  31. Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12, 47-65.CrossRefGoogle Scholar
  32. Franklin, C. A., Thelin, J. W., Nabelek, A. K., & Burchfield, S. B. (2006). The effect of speech presentation level on acceptance of background noise in listeners with normal hearing. Journal of the American Academy of Audiology, 17, 141-146.CrossRefPubMedGoogle Scholar
  33. Freyaldenhoven, M. C., Smiley, D. F., Muenchen, R. A., & Konrad, T. N. (2006). Acceptable noise level: Reliability measures and comparison to preference for background sounds. Journal of the American Academy of Audiology, 17(9), 640-648.CrossRefPubMedGoogle Scholar
  34. Gil, D., & Brumm, H. (2014). Avian Urban Ecology: Behavioural and Physiological Adaptations. Oxford, UK: Oxford University Press.Google Scholar
  35. Gross, K., Pasinelli, G., & Kunc, H. P. (2010). Behavioral plasticity allows short-term adjustment to a novel environment. American Naturalist, 176, 456-464.CrossRefPubMedGoogle Scholar
  36. Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78, 1301-1307.CrossRefGoogle Scholar
  37. Hawkins, J. E., & Stevens, S. S. (1950). The masking of pure tones and of speech by white noise. The Journal of the Acoustical Society of America, 22, 6-13.CrossRefGoogle Scholar
  38. Hine, J. E., Martin, R. L., & Moore, D. R. (1994). Free-field binaural unmasking in ferrets. Behavioral Neuroscience, 108(1), 196-205.CrossRefPubMedGoogle Scholar
  39. Hulse, S. H. (2002). Auditory scene analysis in animal communication. Advances in the Study of Behavior, 31, 163-200.CrossRefGoogle Scholar
  40. Hulse, S. H., MacDougall-Shackleton, S. A., & Wisniewski, A. B. (1997). Auditory scene analysis by songbirds: Stream segregation of birdsong by European starlings (Sturnus vulgaris). Journal of Comparative Psychology, 111(1), 3-13.CrossRefPubMedGoogle Scholar
  41. Kidd, G., Jr., & Colburn, H. S. (2017). Informational masking in speech recognition. In J. Middlebrooks, J. Z. Simon, A. N. Popper, & R. R. Fay (Eds.), The Auditory System at the Cocktail Party (pp. 75-109). Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  42. Klump, G. M. (1996). Bird communication in the noisy world. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and Evolution of Acoustic Communication in Birds (pp. 321-338). Ithaca, NY: Cornell University Press.Google Scholar
  43. Klump, G. M., & Langemann, U. (1995). Comodulation masking release in a songbird. Hearing Research, 87(1-2), 157-164.CrossRefPubMedGoogle Scholar
  44. Lane, H. L., & Tranel, B. (1971). The Lombard sign and the role of hearing in speech. Journal of Hearing and Speech Research, (14), 677-709.CrossRefGoogle Scholar
  45. Lohr, B., Wright, T. F., & Dooling, R. J. (2003). Detection and discrimination of natural calls in masking noise by birds: Estimating the active space of a signal. Animal Behaviour, 65(4), 763-777.CrossRefGoogle Scholar
  46. MacDougall-Shackleton, S. A., Hulse, S. H., Gentner, T. Q., & White, W. (1998). Auditory scene analysis by European starlings (Sturnus vulgaris): Perceptual segregation of tone sequences. The Journal of the Acoustical Society of America, 103(6), 3581-3587.CrossRefPubMedGoogle Scholar
  47. Manabe, K., Sadr, E. I., & Dooling, R. J. (1998). Control of vocal intensity in budgerigars (Melopsittacus undulatus): Differential reinforcement of vocal intensity and the Lombard effect. The Journal of the Acoustical Society of America, 103(2), 1190-1198.CrossRefPubMedGoogle Scholar
  48. Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behavioral Ecology and Sociobiology, 2, 271-290.CrossRefGoogle Scholar
  49. Marten, K., Quine, D., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. II. Tropical forest habitats. Behavioral Ecology and Sociobiology 2, 291-302.CrossRefGoogle Scholar
  50. Mathevon, N., Aubin, T., & Dabelsteen, T. (1996). Song degradation during propagation: Importance of song post for the wren Troglodytes troglodytes. Ethology, 102, 397-412.CrossRefGoogle Scholar
  51. Mathevon, N., Dabelsteen, T., & Blumenrath, S. H. (2005). Are high perches in the blackcap Silvia atricapilla song or listening posts? A transmission study. The Journal of the Acoustical Society of America, 117, 442-449.CrossRefPubMedGoogle Scholar
  52. Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139-148.CrossRefPubMedGoogle Scholar
  53. Miller, G. A. (1947). The masking of speech. Psychological Bulletin, 44, 105-129.CrossRefPubMedGoogle Scholar
  54. Mockford, E. J., Marshall, R. C., & Dabelsteen, T. (2011). Degradation of rural and urban great tit song: Testing transmission efficiency. PLoS ONE, 6(12), e28242.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moore, B. C. J. (2003). An Introduction to the Psychology of Hearing, 5th ed. San Diego, CA: Academic Press.Google Scholar
  56. Nelson, D. A., & Marler, P. (1990). The perception of birdsong and an ecological concept of signal space. In W. C. Stebbins & M. A. Berkley (Eds.), Comparative Perception, Vol. II: Complex Signals (pp. 443-478). New York: John Wiley & Sons.Google Scholar
  57. Nemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? The American Naturalist, 176, 465-475.CrossRefPubMedGoogle Scholar
  58. Okanoya, K., & Dooling, R. J. (1987). Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. Journal of Comparative Psychology, 101(1), 7-15.CrossRefPubMedGoogle Scholar
  59. Osmanski, M., & Dooling, R. J. (2009). The effect of altered auditory feedback on control of vocal production in budgerigars (Melopsittacus undulatus). The Journal of the Acoustical Society of America, 126, 911-919.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pohl, N. U., Slabbekoorn, H., Klump, G., & Langemann, U. (2009) Effects of signal features and environmental noise on signal detection in the great tit, Parus major. Animal Behaviour, 78, 1293-1300.CrossRefGoogle Scholar
  61. Saberi, K., Dostal, L., Sadralodabai, T., Bull, V., & Perrott, D. R. (1991). Free-field release from masking. The Journal of the Acoustical Society of America, 90(3), 1355-1370.CrossRefPubMedGoogle Scholar
  62. Scharf, B. (1980). Critical bands. In J. V. Tobias (Ed.), Foundations of Modern Auditory Theory 1 (157-202). New York: Academic Press.Google Scholar
  63. Slabbekoorn, H. (2013). Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089-1099.CrossRefGoogle Scholar
  64. Slabbekoorn, H., & Peet, M. (2003). Ecology: Birds sing at a higher pitch in urban noise. Nature, 424(6946), 267.CrossRefPubMedGoogle Scholar
  65. Verzijden, M. N., Ripmeester, E. A. P., Ohms, V. R., Snelderwaard, P., & Slabbekoorn, H. (2010). Immediate spectral flexibility in singing chiffchaffs during experimental exposure to highway noise. Journal of Experimental Biology, 213(15), 2575-2581.CrossRefPubMedGoogle Scholar
  66. Vestergaard, M. D., Fyson, N. R., & Patterson, R. D. (2011). The mutual roles of temporal glimpsing and vocal characteristics in cocktail-party listening. The Journal of the Acoustical Society of America, 130, 429-439.CrossRefPubMedGoogle Scholar
  67. Vliegen, J., & Oxenham, A. J. (1999). Sequential stream segregation in the absence of spectral cues. The Journal of the Acoustical Society of America, 105(1), 339-346.CrossRefPubMedGoogle Scholar
  68. Wiley, R. H., & Richards, D. G. (1982). Adaptations for acoustic communication in birds: Sound transmission and signal detection. In D. E. Kroodsma & E. H. Miller (Eds.), Acoustic Communication in Birds, vol. 1 (pp. 131-181). New York: Academic Press.CrossRefGoogle Scholar
  69. Wisniewski, A. B., & Hulse, S. H. (1997). Auditory scene analysis in European starlings (Sturnus vulgaris): Discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. Journal of Comparative Psychology, 111(4), 337-350.CrossRefGoogle Scholar
  70. Yost, W. A., & Shofner, W. P. (2009). Critical bands and critical ratios in animal psychoacoustics: An example using chinchilla data. The Journal of the Acoustical Society of America, 125(1), 315-323.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MarylandCollege ParkUSA
  2. 2.VA Loma Linda Healthcare SystemLoma LindaUSA

Personalised recommendations