Advertisement

Effects of Noise on Marine Mammals

  • Christine ErbeEmail author
  • Rebecca Dunlop
  • Sarah Dolman
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)

Abstract

Marine mammals (whales, dolphins, seals, sea lions, sea cows) use sound both actively and passively to communicate and sense their environment, covering frequencies from a few hertz to greater than 100 kHz, differing with species. Although a few documents on marine mammal sound production and reception date back 200 years, concern about the effects of man-made noise on marine mammals has only been documented since the 1970s. Underwater noise can interfere with key life functions of marine mammals (e.g., foraging, mating, nursing, resting, migrating) by impairing hearing sensitivity, masking acoustic signals, eliciting behavioral responses, or causing physiological stress. Many countries are developing and updating guidelines and regulations for underwater noise management in relation to marine mammal conservation. In the United States, the Marine Mammal Protection Act, enacted in 1972, is increasingly being applied to underwater noise emission. Common mitigation methods include (1) time/area closures, (2) the establishment of safety zones that are monitored by visual observers or passive acoustics and that lead to shut-down or low-power operations if animals enter these zones, (3) noise reduction gear like bubble curtains around pile driving, and (4) noise source modifications or operational parameters like soft starts. Mitigation management mostly deals with single operations (like a one-month seismic survey). Key questions that remain are how noise impacts accumulate over time and multiple exposures, how multiple acoustic and nonacoustic stressors interact, and how effects on individuals affect a population as a whole.

Keywords

Behavioral response Bioacoustic impact Environmental management Marine Mammal Protection Act Marine mammals Masking Population consequences of acoustic disturbance Population consequences of disturbance Safety zone Stress Temporary threshold shift Underwater noise 

Notes

Compliance with Ethics Requirements

Christine Erbe declares that she has no conflict of interest.

Rebecca Dunlop declares that she has no conflict of interest.

Sarah Dolman declares that she has no conflict of interest.

References

  1. Allen, A. N., Schanze, J. J., Solow, A. R., & Tyack, P. L. (2014). Analysis of a Blainville’s beaked whale’s movement response to playback of killer whale vocalizations. Marine Mammal Science, 30(1), 154–168.CrossRefGoogle Scholar
  2. Andrew, R., Bruce, M. H., & James, A. M. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online, 3(2), 65–70.CrossRefGoogle Scholar
  3. Au, W. W. L. (1993). The Sonar of Dolphins. New York: Springer-Verlag.CrossRefGoogle Scholar
  4. Beale, C. M., & Monaghan, P. (2004). Behavioural responses to human disturbance: A matter of choice? Animal Behaviour, 68(5), 1065–1069.CrossRefGoogle Scholar
  5. Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122(3), 235–251.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Boyd, I. L., Frisk, G., Urban, E., Tyack, P., Ausubel, J., Seeyave, S., Cato, D., Southall, B., Weise, M., Andrew, R., Akamatsu, R., Dekeling, R., Erbe, C., Farmer, D. M., Gentry, R., Gross, T., Hawkins, A. D., Li, F. C., Metcalf, K., Miller, J. H., Moretti, D., Rodrigo, C., & Shinke, T. (2011). An International Quiet Ocean Experiment. Oceanography, 24(2), 174–181.CrossRefGoogle Scholar
  7. Branstetter, B. K., & Finneran, J. J. (2008). Comodulation masking release in bottlenose dolphins (Tursiops truncatus). The Journal of the Acoustical Society of America, 124(1), 625–633.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryant, P. J., Lafferty, C. M., & Lafferty, S. K. (1984). Reoccupation of Laguna Guerrero Negro, Baja California, Mexico, by gray whales. In M. L. Jones, S. L. Swartz, & S. Leatherwood (Eds.), The Gray Whale: Eschrichtius robustus (pp. 375–387). Orlando, FL: Academic Press.CrossRefGoogle Scholar
  9. Buckstaff, K. C. (2004). Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Marine Mammal Science, 20(4), 709–725.CrossRefGoogle Scholar
  10. Caldwell, M. C., & Caldwell, D. K. (1965). Individualized whistle contours in bottle-nosed dolphins (Tursiops truncatus). Nature, 207(4995), 434–435.CrossRefGoogle Scholar
  11. Campbell, D. T., & Stanley, J. C. (1966). Experimental and Quasi-Experimental Designs for Research. Chicago, IL: Rand McNally.Google Scholar
  12. Castellote, M., Clark, C., & Lammers, M. (2012). Acoustic and behavioural changes by fin whales (Balaenoptera physalus) in response to shipping and airgun noise. Biological Conservation, 147(1), 115–122.CrossRefGoogle Scholar
  13. Cato, D. H. (1978). Marine biological choruses observed in tropical waters near Australia. The Journal of the Acoustical Society of America, 64(3), 736–743.CrossRefGoogle Scholar
  14. Cato, D. H. (2008). Ocean ambient noise: Its measurement and its significance to marine animals. Paper presented at the Conference on Underwater Noise Measurement, Impact and Mitigation, Southampton, UK, October 14-15, 2008. Proceedings of the Institute of Acoustics, 30, 1-9.Google Scholar
  15. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
  16. Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267(9), 1244–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clark, C. W., Ellison, W. T., Southall, B. L., Hatch, L., Van Parijs, S. M., Frankel, A., & Ponirakis, D. (2009). Acoustic masking in marine ecosystems: Intuitions, analysis, and implication. Marine Ecology Progress Series, 395, 201–222.CrossRefGoogle Scholar
  18. Costa, D. P. (2012). A bioenergetics approach to developing the PCAD model. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 423–426). New York: Springer-Verlag.CrossRefGoogle Scholar
  19. Costa, D. P., Schwarz, L., Robinson, P., Schick, R. S., Morris, P. A., Condit, R., Crocker, D. E., & Kilpatrick, A. M. (2016). A bioenergetics approach to understanding the population consequences of disturbance: Elephant seals as a model system. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 161–169). New York: Springer-Verlag.CrossRefGoogle Scholar
  20. Cox, T. M., Ragen, T. J., Read, A. J., Vos, E., Baird, R. W., Balcomb, K., Barlow, J., Caldwell, J., Cranford, T., Crum, L., Amico, A. D., Spain, G. D., Fernandez, A., Finneran, J., Gentry, R., Gerth, W., Gulland, F., Hidebrand, J., Houser, D., Hullar, T., Jepson, P. D., Ketten, D., MacLeod, C. D., Miller, P., Moore, S., Mountain, D. C., Palka, D., Ponganis, P., Rommel, S., Rowles, T., Taylor, B., Tyack, P., Wartzok, D., Gisiner, R., Mead, J., & Benner, L. (2006). Understanding the impacts of anthropogenic sound on beaked whales. Journal of Cetacean Research and Management, 7(3), 177–187.Google Scholar
  21. Deecke, V. B. (2006). Studying marine mammal cognition in the wild: A review of four decades of playback experiments. Aquatic Mammals, 32(4), 461–482.CrossRefGoogle Scholar
  22. Deecke, V. B., Slater, P. J. B., & Ford, J. K. B. (2002). Selective habituation shapes acoustic predator recognition in harbour seals. Nature, 420(6912), 171–173.CrossRefPubMedGoogle Scholar
  23. Dekeling, R., Tasker, M., Ainslie, M., Andersson, M., André, M., Borsani, F., Brensing, K., Castellote, M., Dalen, J., Folegot, T., van der Graaf, S., Leaper, R., Liebschner, A., Pajala, J., Robinson, S., Sigray, P., Sutton, G., Thomsen, F., Werner, S., Wittekind, D., & Young, J. V. (2016). The European Marine Strategy: Noise monitoring in European marine waters from 2014. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 205–215). New York: Springer-Verlag.CrossRefGoogle Scholar
  24. Dekeling, R. P. A., Tasker, M. L., van der Graaf, A. J., Ainslie, M. A., Andersson, M. H., André, M., Borsani, J. F., Brensing, K., Castellote, M., Cronin, D., Dalen, J., Folegot, T., Leaper, R., Pajala, J., Redman, P., Robinson, S. P., Sigray, P., Sutton, G., Thomsen, F., Werner, S., Wittekind, D., & Young, J. V. (2013). Monitoring Guidance for Underwater Noise in European Seas: Background Information and Annexes. Guidance Report, Second Report of the Technical Subgroup on Underwater Noise (TSG Noise), November 2013.Google Scholar
  25. DeRuiter, S. L., Southall, B. L., Calambokidis, J., Zimmer, W. M. X., Sadykova, D., Falcone, E. A., Friedlaender, A. S., Joseph, J. E., Moretti, D., Schorr, G. S., Thomas, L., & Tyack, P. L. (2013). First direct measurements of behavioural responses by Cuvier’s beaked whales to mid-frequency active sonar. Biology Letters, 9(4), 20130223.  https://doi.org/10.1098/rsbl.2013.0223.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Dolman, S. J., Weir, C. R., & Jasny, M. (2009). Comparative review of marine mammal guidance implemented during naval exercises. Marine Pollution Bulletin, 58, 465–477.CrossRefPubMedGoogle Scholar
  27. Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G., & Frisch, H. (2011). Active sonar, beaked whales and European regional policy. Marine Pollution Bulletin, 63(1–4), 27–34.CrossRefPubMedGoogle Scholar
  28. Dooling, R. J., & Blumenrath, S. H. (2014). Avian sound perception in noise. In H. Brumm (Ed.), Animal Communication in Noise (pp. 229–250). Berlin: Springer-Verlag.Google Scholar
  29. Dooling, R. J., West, E. W., & Leek, M. R. (2009). Conceptual and computational models of the effects of anthropogenic noise on birds. Paper presented at the 5th International Conference on Bioacoustics 2009, Holywell Park, UK, March 31 to April 2, 2009. Proceedings of the Institute of Acoustics, 31(1), 99–106.Google Scholar
  30. Dunlop, R. A., Cato, D. H., & Noad, M. J. (2010). Your attention please: Increasing ambient noise levels elicits a change in communication behaviour in humpback whales (Megaptera novaeangliae). Proceedings of the Royal Society B: Biological Sciences, 277(1693), 2521–2529.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dunlop, R. A., Noad, M. J., Cato, D. H., Kniest, E., Miller, P., Smith, J. N., & Stokes, D. M. (2013). Multivariate analysis of behavioural response experiments in humpback whales (Megaptera novaeangliae). Journal of Experimental Biology, 216, 759–770.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dunlop, R. A., Cato, D. H., & Noad, M. J. (2014). Evidence of a Lombard response in migrating humpback whales (Megaptera novaeangliae). The Journal of the Acoustical Society of America, 136(1), 430–437.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dunlop, R. A., Noad, M. J., McCauley, R. D., Kniest, E., Paton, D., & Cato, D. H. (2015). The behavioural response of humpback whales (Megaptera novaeangliae) to a 20 cubic inch air gun. Aquatic Mammals, 41(4), 412–433.CrossRefGoogle Scholar
  34. Dunlop, R. A., Noad, M. J., McCauley, R. D., Kniest, E., Slade, R., Paton, D., & Cato, D. H. (2016). Response of humpback whales (Megaptera novaeangliae) to ramp-up of a small experimental air gun array. Marine Pollution Bulletin, 103(1–2), 72–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ellison, W., Southall, B., Clark, C., & Frankel, A. (2012). A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conservation Biology, 26(1), 21–28.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Erbe, C. (2008). Critical ratios of beluga whales (Delphinapterus leucas) and masked signal duration. The Journal of the Acoustical Society of America, 124(4), 2216–2223.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Erbe, C. (2011). Underwater Acoustics: Noise and the Effects on Marine Mammals, A Pocket Handbook, 3rd ed. Brisbane, Australia: JASCO Applied Sciences. Available at http://oalib.hlsresearch.com/PocketBook 3rd ed.pdf.
  38. Erbe, C. (2012). The effects of underwater noise on marine mammals. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 17–22). New York: Springer-Verlag.CrossRefGoogle Scholar
  39. Erbe, C. (2013). Underwater passive acoustic monitoring and noise impacts on marine fauna—A workshop report. Acoustics Australia, 41(1), 113–119.Google Scholar
  40. Erbe, C., & Farmer, D. M. (1998). Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise. Deep Sea Research Part II: Topical Studies in Oceanography, 45(7), 1373–1388.CrossRefGoogle Scholar
  41. Erbe, C., & Farmer, D. M. (2000). Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. The Journal of the Acoustical Society of America, 108(3), 1332–1340.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Erbe, C., Reichmuth, C., Cunningham, K. C., Lucke, K., & Dooling, R. J. (2016a). Communication masking in marine mammals: A review and research strategy. Marine Pollution Bulletin, 103, 15–38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Erbe, C., Ainslie, M. A., de Jong, C. A. F., Racca, R., & Stocker, M. (2016b). The need for protocols and standards in research on underwater noise impacts on marine life. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1265–1271). New York: Springer-Verlag.Google Scholar
  44. Fernandez, A., Edwards, J. F., Rodriguez, F., de los Monteros, A. E., Herraez, P., Castro, P., Jaber, J. R., Martin, V., & Arbelo, M. (2005). “Gas and fat embolic syndrome” involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. Veterinary Pathology, 42(4), 446–457.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Finley, K. J., Miller, G. W., Davis, R. A., & Greene, C. R. (1990). Reactions of belugas, Delphinapterus leucas, and narwhals, Monodon monoceros, to ice-breaking ships in the Canadian high arctic. Canadian Bulletin of Fisheries and Aquatic Sciences, 224, 97–117.Google Scholar
  46. Finneran, J. J., & Schlundt, C. E. (2013). Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus). The Journal of the Acoustical Society of America, 133(3), 1819–1826.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fitch, R., Harrison, J., & Lewandowski, J. (2011). Marine Mammal and Sound Workshop July 13 and 14, 2010. Report to the National Ocean Council Ocean Science and Technology Interagency Policy Committee, Washington, DC.Google Scholar
  48. Fletcher, J. L., & Busnel, R.-G. (Eds.). (1978). Effects of Noise on Wildlife. New York: Academic Press.Google Scholar
  49. Foote, A. D., Osborne, R. W., & Hoelzel, A. R. (2004). Environment: Whale-call response to masking boat noise. Nature, 428(6986), 910.  https://doi.org/10.1038/428910a.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ford, J. K. B. (1991). Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Canadian Journal of Zoology, 69(6), 1454–1483.CrossRefGoogle Scholar
  51. Fristrup, K. M., Hatch, L. T., & Clark, C. W. (2003). Variation in humpback whale (Megaptera novaeangliae) song length in relation to low-frequency sound broadcasts. The Journal of the Acoustical Society of America, 113(6), 3411–3424.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gannon, D. P., Barros, N. B., Nowacek, D. P., Read, A. J., Waples, D. M., & Wells, R. S. (2005). Prey detection by bottlenose dolphins, Tursiops truncatus: An experimental test of the passive listening hypothesis. Animal Behaviour, 69, 709–720.CrossRefGoogle Scholar
  53. Gavrilov, A., & Li, B. (2007). Antarctica as One of the Major Sources of Noise in the Ocean. Paper presented at the 2nd International Conference and Exhibition, Underwater Acoustic Measurements: Technologies and Results, Heraklion, Crete, June 25-29, 2007.Google Scholar
  54. Gedamke, J., Harrison, J., Hatch, L., Angliss, R., Barlow, J., Berchok, C., Caldow, C., Castellote, M., Cholewiak, D., DeAngelis, M. L., Dziak, R. P., Garland, E. C., Guan, S., Hastings, S., Holt, M. M., Laws, B., Mellinger, D. K., Moore, S. E., Moore, T. J., Oleson, E., Pearson-Meyer, J., Piniak, W., Redfern, J. V., Rowles, T., Scholik-Schlomer, A., Smith, A. B., Soldevilla, M., Stadler, J., Van Parijs, S. M., & Wahle, C. (2016). Ocean Noise Strategy Roadmap. Boston, MA: National Oceanic and Atmospheric Administration.Google Scholar
  55. Gomez, C., Lawson, J., Wright, A. J., Buren, A., Tollit, D., & Lesage, V. (2016). A systematic review on the behavioural responses of wild marine mammals to noise: The disparity between science and policy. Canadian Journal of Zoology, 94(12), 801–819.CrossRefGoogle Scholar
  56. Guerra, M., Thode, A., Blackwell, S., & Macrander, M. (2011). Quantifying seismic survey reverberation off the Alaskan North Slope. The Journal of the Acoustical Society of America, 130(5), 3046–3058.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hall, J. E. (2011). Guyton and Hall Textbook of Medical Physiology, 12th ed. Philadelphia, PA: Saunders/Elsevier.Google Scholar
  58. Harwood, J., King, S., Schick, R., Donovan, C., & Booth, C. (2014). A protocol for implementing the interim population consequences of disturbance (PCoD) approach: Quantifying and assessing the effects of UK offshore renewable energy developments on marine mammal populations. Report Number SMRUL-TCE-2013-014, Scottish Marine and Freshwater Science, 5(2). Available at http://www.gov.scot/Resource/0044/00443360.pdf.
  59. Herschel, A., Stephenson, S., Sparling, C., Sams, C., & Monnington, J. (2014). ORJIP Project 4, Phase 1 Use of Deterrent Devices and Improvements to Standard Mitigation During Piling. Research Summary 300100 (2013): S00, Offshore Renewables Joint Industry Programme (ORJIP).Google Scholar
  60. Herzing, D. L. (1996). Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquatic Mammals, 22(2), 61–79.Google Scholar
  61. Hogg, C. J., Rogers, T. L., Shorter, A., Barton, K., Miller, P. J. O., & Nowacek, D. P. (2009). Determination of steroid hormones in whale blow: It is possible. Marine Mammal Science, 25(3), 605–618.CrossRefGoogle Scholar
  62. Holt, M. M., & Schusterman, R. J. (2007). Spatial release from masking of aerial tones in pinnipeds. The Journal of the Acoustical Society of America, 121(2), 1219–1225.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Holt, M. M., Noren, D. P., Veirs, V., Emmons, C. K., & Veirs, S. (2009). Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. The Journal of the Acoustical Society of America, 125(1), EL27-EL32.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Home, E. (1812). An account of some peculiarities in the structure of the organ of hearing in the Balaena mysticetus of Linnaeus. Philosophical Transactions of the Royal Society of London, 102(1), 83–89.CrossRefGoogle Scholar
  65. Hoyt, E. (2011). Marine Protected Areas for Whales, Dolphins and Porpoises, 2nd ed. London: Earthscan.Google Scholar
  66. International Maritime Organization (IMO). (2012). Provisions for Reduction of Noise from Commercial Shipping and Its Adverse Impacts on Marine Life. Document DE 57/17, IMO Sub-Committee on Ship Design and Equipment.Google Scholar
  67. Jensen, F. B., Kuperman, W. A., Porter, M. B., & Schmidt, H. (2011). Computational Ocean Acoustics, 2nd ed. New York: Springer-Verlag.CrossRefGoogle Scholar
  68. Jepson, P. D., Arbelo, M., Deaville, R., Patterson, I. A. P., Castro, P., Baker, J. R., Degollada, E., Ross, H. M., Herraez, P., Pocknell, A. M., Rodriguez, F., Howie, F. E., Espinosa, A., Reid, R. J., Jaber, J. R., Martin, V., Cunningham, A. A., & Fernandez, A. (2003). Gas-bubble lesions in stranded cetaceans. Nature, 425(6958), 575–576.  https://doi.org/10.1038/425575a.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28(1), 3–12.CrossRefGoogle Scholar
  70. Joint Nature Conservation Committee (JNCC). (2010a). JNCC Guidelines for Minimising the Risk of Injury and Disturbance to Marine Mammals from Seismic Surveys. Aberdeen, UK: Joint Nature Conservation Committee.Google Scholar
  71. Joint Nature Conservation Committee (JNCC). (2010b). Statutory Nature Conservation Agency Protocol for Minimising the Risk of Injury to Marine Mammals from Piling Noise. Aberdeen, UK: Joint Nature Conservation Committee.Google Scholar
  72. Kastak, D., Holt, M. M., Mulsow, J., Kastak, C. J. R., Schusterman, R. J., & Southall, B. L. (2006). Towards a predictive model of noise-induced temporary threshold shift for an amphibious marine mammal, the California sea lion (Zalophus californianus). The Journal of the Acoustical Society of America, 120(5), 3226.CrossRefGoogle Scholar
  73. Kastak, D., Mulsow, J., Ghoul, A., & Reichmuth, C. (2008). Noise-induced permanent threshold shift in a harbor seal. The Journal of the Acoustical Society of America, 123(5), 2986.CrossRefGoogle Scholar
  74. Kastelein, R. A., Gransier, R., & Hoek, L. (2013). Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal. The Journal of the Acoustical Society of America, 134(1), 13–16.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kastelein, R. A., Schop, J., Gransier, R., & Hoek, L. (2014a). Frequency of greatest temporary hearing threshold shift in harbor porpoises (Phocoena phocoena) depends on the noise level. The Journal of the Acoustical Society of America, 136(3), 1410–1418.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kastelein, R. A., Hoek, L., Gransier, R., Rambags, M., & Claeys, N. (2014b). Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing. The Journal of the Acoustical Society of America, 136(1), 412–422.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.PubMedCentralCrossRefPubMedGoogle Scholar
  78. Lanyon, J. M., Sneath, H. L., & Long, T. (2012). Evaluation of exertion and capture stress in serum of wild dugongs (Dugong dugon). Journal of Zoo and Wildlife Medicine, 43(1), 20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lesage, V., Barrette, C., Kingsley, M. C. S., & Sjare, B. (1998). The effect of vessel noise on the vocal behavior of belugas in the St. Lawrence River estuary, Canada. Marine Mammal Science, 15(1), 65–84.CrossRefGoogle Scholar
  80. Liberman, M. C. (2016). Noise-induced hearing loss: Permanent versus temporary threshold shifts and the effects of hair cell versus neuronal degeneration. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1–7). New York: Springer-Verlag.Google Scholar
  81. Lombard, É. (1911). Le signe de l'élévation de la voix. Annales des Maladies de L'Oreille et du Larynx, XXXVII(2), 101-109.Google Scholar
  82. Mann, D. A., Cook-Hill, M., Manire, C., Greenhow, D., Montie, E., Powell, J., Wells, R., Bauer, G., Cunningham-Smith, P., Lingenfelser, R., Digiovanni Jr., R., Stone, A., Brodsky, M., Stevens, R., Kieffer, G., & Hoetjes, P. (2010). Hearing loss in stranded odontocete dolphins and whales. PLoS ONE, 5(11), e13824.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Mashburn, K. L., & Atkinson, S. (2004). Evaluation of adrenal function in serum and feces of Steller sea lions (Eumetopias jubatus): Influences of molt, gender, sample storage, and age on glucocorticoid metabolism. General and Comparative Endocrinology, 136(3), 371–381.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Miller, P. J. O., Biassoni, N., Samuels, A., & Tyack, P. L. (2000). Whale songs lengthen in response to sonar. Nature, 405(6789), 903.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Miller, P. J. O., Johnson, M. P., Madsen, P. T., Biassoni, N., Quero, M., & Tyack, P. L. (2009). Using at-sea experiments to study the effects of airguns on the foraging behavior of sperm whales in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 56(7), 1168–1181.CrossRefGoogle Scholar
  86. Miller, P. J. O., Antunes, R. N., Wensveen, P. J., Samarra, F. I. P., Alves, A. C., Tyack, P. L., Kvadsheim, P. H., Kleivane, L., Lam, F.-P. A., Ainslie, M. A., & Thomas, L. (2014). Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales. The Journal of the Acoustical Society of America, 135(1), 975–993.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Morton, A. B., & Symonds, H. K. (2002). Displacement of Orcinus orca (L.) by high amplitude sound in British Columbia, Canada. ICES Journal of Marine Science, 59(1), 71–80.CrossRefGoogle Scholar
  88. Myers, M. J., Litz, B., & Atkinson, S. (2010). The effects of age, sex, season and geographic region on circulating serum cortisol concentrations in threatened and endangered Steller sea lions (Eumetopias jubatus). General and Comparative Endocrinology, 165(1), 72–77.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nabe-Nielsen, J., Sibly, R. M., Tougaard, J., Teilmann, J., & Sveegaard, S. (2014). Effects of noise and by-catch on a Danish harbour porpoise population. Ecological Modelling, 272, 242–251.CrossRefGoogle Scholar
  90. Nachtigall, P. E., & Supin, A. Y. (2013). A false killer whale reduces its hearing sensitivity when a loud sound is preceded by a warning. Journal of Experimental Biology, 216(12), 3062–3070.CrossRefPubMedGoogle Scholar
  91. Nachtigall, P. E., & Supin, A. Y. (2014). Conditioned hearing sensitivity reduction in a bottlenose dolphin (Tursiops truncatus). Journal of Experimental Biology, 217(16), 2806–2813.CrossRefPubMedGoogle Scholar
  92. National Marine Fisheries Service. (2016). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. Report by the National Oceanic and Atmospheric Administration (NOAA) and US Department of Commerce (DOC), Silver Spring, MD.Google Scholar
  93. National Research Council. (1994). Low-Frequency Sound and Marine Mammals: Current Knowledge and Research Needs. Washington, DC: National Academies Press.Google Scholar
  94. National Research Council. (2000). Marine Mammals and Low-Frequency Sound: Progress Since 1994. Washington, DC: National Academies Press.Google Scholar
  95. National Research Council. (2005). Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects. Washington, DC: National Academies Press.Google Scholar
  96. New, L. F., Harwood, J., Thomas, L., Donovan, C., Clark, J. S., Hastie, G., & Lusseau, D. (2013). Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Functional Ecology, 27, 314–322.CrossRefGoogle Scholar
  97. New, L. F., Clark, J. S., Costa, D. P., Fleishman, E., Hindell, M. A., Klanjcek, T., Lusseau, D., Kraus, S., McMahon, C. R., Robinson, P. W., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L., Tyack, P. L., & Harwood, J. (2014). Using short-term measures of behaviour to estimate long-term fitness of southern elephant seals. Marine Ecology Progress Series, 496, 99–108.CrossRefGoogle Scholar
  98. Norris, K., & Harvey, G. (1974). Sound transmission in the porpoise head. The Journal of the Acoustical Society of America, 56(2), 659–664.CrossRefPubMedGoogle Scholar
  99. Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. Mammal Review, 37(2), 81–115.CrossRefGoogle Scholar
  100. Nowacek, D. P., Bröker, K., Donovan, G., Gailey, G., Racca, R., & Reeves, R. R. (2013). Responsible practices for minimizing and monitoring environmental impacts of marine seismic surveys with an emphasis on marine mammals. Aquatic Mammals, 39(4), 356–377.CrossRefGoogle Scholar
  101. Ortiz, R. M., & Worthy, G. A. J. (2000). Effects of capture on adrenal steroid and vasopressin concentrations in free-ranging bottlenose dolphins (Tursiops truncatus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 125(3), 317–324.CrossRefGoogle Scholar
  102. Parks, S. E., Clark, C. W., & Tyack, P. L. (2007). Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communication. The Journal of the Acoustical Society of America, 122(6), 3725–3731.CrossRefPubMedGoogle Scholar
  103. Parsons, E. C. M., Dolman, S. J., Wright, A. J., Rose, N. A., & Burns, W. C. G. (2008). Navy sonar and cetaceans: Just how much does the gun need to smoke before we act? Marine Pollution Bulletin, 56(7), 1248–1257.CrossRefPubMedGoogle Scholar
  104. Parsons, E. C. M., Dolman, S. J., Jasny, M., Rose, N. A., Simmonds, M. P., & Wright, A. J. (2009). A critique of the UK’s JNCC seismic survey guidelines for minimising acoustic disturbance to marine mammals: Best practise? Marine Pollution Bulletin, 58(5), 643–651.CrossRefPubMedGoogle Scholar
  105. Payne, R., & Webb, D. (1971). Orientation by means of long range acoustic signaling in baleen whales. Annals of the New York Academy of Sciences, 188, 110–141.CrossRefPubMedGoogle Scholar
  106. Payne, R. S., & McVay, S. (1971). Songs of humpback whales. Science, 173(3997), 585–597.CrossRefPubMedGoogle Scholar
  107. Rendell, L. E., & Gordon, J. C. D. (1999). Vocal response of long-finned pilot whales (Globicephala melas) to military sonar in the Ligurian Sea. Marine Mammal Science, 15(1), 198–204.CrossRefGoogle Scholar
  108. Richardson, W. J., Greene, C. R., Malme, C. I., & Thomson, D. H. (1995). Marine Mammals and Noise. San Diego, CA: Academic Press.Google Scholar
  109. Rolland, R. M., Parks, S. E., Hunt, K. E., Castellote, M., Corkeron, P. J., Nowacek, D. P., Wasser, S. K., & Kraus, S. D. (2012). Evidence that ship noise increases stress in right whales. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2363–2368.CrossRefPubMedGoogle Scholar
  110. Roman, J., Altman, I., Dunphy-Daly, M. M., Campbell, C., Jasny, M., & Read, A. J. (2013). The Marine Mammal Protection Act at 40: Status, recovery, and future of US marine mammals. Annals of the New York Academy of Sciences, 1286, 29–49.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Romano, T. A., Keogh, M. J., Kelly, C., Feng, P., Berk, L., Schlundt, C. E., Carder, D. A., & Finneran, J. J. (2004). Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure. Canadian Journal of Fisheries and Aquatic Sciences, 61(7), 1124–1134.CrossRefGoogle Scholar
  112. Romero, M. L., & Butler, L. K. (2007). Endocrinology of stress. International Journal of Comparative Psychology, 20(2), 89–95.Google Scholar
  113. Rommel, S. A., Costidid, A. M., Fernández, A., Jepson, P. D., Pabst, D. A., McLellan, W. W., Houser, D. S., Cranford, T. W., Van Helden, A. L., Allen, D. M., & Barros, N. B. (2006). Elements of beaked whale anatomy and diving physiology and some hypothetical causes of sonar-related stranding. Journal of Cetacean Research and Management, 7, 189–209.Google Scholar
  114. Salter, R. E. (1979). Site utilisation, activity budgets, and disturbance responses of Atlantic walruses during terrestrial haul-out. Canadian Journal of Zoology, 57(6), 1169–1180.CrossRefGoogle Scholar
  115. Scheifele, P. M., Andrew, S., Cooper, R. A., Darre, M., Musiek, F. E., & Max, L. (2005). Indication of a Lombard vocal response in the St. Lawrence River beluga. The Journal of the Acoustical Society of America, 117(3), 1486–1492.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Schorr, G. S., Falcone, E. A., Moretti, D. J., & Andrews, R. D. (2014). First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS ONE, 9(3), e92633.PubMedCentralCrossRefPubMedGoogle Scholar
  117. Scott, K., & Dolman, S. J. (2006). Current Noise Pollution Issues. Paper presented at the 25th Meeting of the Convention for the Conservation of Antarctic and Marine Living Resources (CCAMLR), Hobart, Australia, October 23 to November 3, 2006.Google Scholar
  118. Simmonds, M. P., Dolman, S. J., Jasny, M., Parsons, E. C. M., Weilgart, L., Wright, A. J., & Leaper, R. (2014). Marine noise pollution-Increasing recognition but need for more practical action. Journal of Ocean Technology, 9, 71–90.Google Scholar
  119. Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., Jr., Kastak, D., Ketten, D. R., Miller, J. H., Nachtigall, P. E., Richardson, W. J., Thomas, J. A., & Tyack, P. L. (2007). Marine mammal noise exposure criteria: Initial scientific recommendations. Aquatic Mammals, 33(4), 411–521.CrossRefGoogle Scholar
  120. Suzuki, M., Uchida, S., Ueda, K., Tobayama, T., Katsumata, E., Yoshioka, M., & Aida, K. (2003). Diurnal and annual changes in serum cortisol concentrations in Indo-Pacific bottlenose dolphins Tursiops aduncus and killer whales Orcinus orca. General and Comparative Endocrinology, 132(3), 427–433.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Thompson, P. M., Brookes, K. L., Graham, I. M., Barton, T. R., Needham, K., Bradbury, G., & Merchant, N. D. (2013). Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132001.  https://doi.org/10.1098/rspb.2013.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Tougaard, J., Wright, A. J., & Madsen, P. T. (2015). Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises. Marine Pollution Bulletin, 90(1–2), 196–208.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Trana, M. R., Roth, J. D., Tomy, G. T., Anderson, W. G., & Ferguson, S. H. (2015). Influence of sample degradation and tissue depth on blubber cortisol in beluga whales. Journal of Experimental Marine Biology and Ecology, 462, 8–13.Google Scholar
  124. Turnbull, S. D. (1994). Changes in masked thresholds of a harbor seal Phoca vitulina associated with angular separation of signal and noise sources. Canadian Journal of Zoology, 72, 1863–1866.CrossRefGoogle Scholar
  125. Tyack, P. L. (2000). Functional aspects of cetacean communication. In J. Mann, R. C. Connor, P. L. Tyack, & H. Whitehead (Eds.), Cetacean Societies: Field Studies of Dolphins and Whales (pp. 270–307). Chicago, IL: The University of Chicago Press.Google Scholar
  126. Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A., & Madsen, P. T. (2006). Extreme diving of beaked whales. Journal of Experimental Biology, 209(21), 4238–4253.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tyack, P. L., Zimmer, W. M. X., Moretti, D., Southall, B. L., Claridge, D. E., Durban, J. W., Clark, C. W., D’Amico, A., DiMarzio, N., Jarvis, S., McCarthy, E., Morrissey, R., Ward, J., & Boyd, I. L. (2011). Beaked whales respond to simulated and actual navy sonar. PLoS ONE, 6(3), e17009.PubMedCentralCrossRefPubMedGoogle Scholar
  128. US Department of the Navy. (2008). Atlantic Fleet Active Sonar Training Environmental Impact Statement/Overseas Environmental Impact Statement. Norfolk, VA: Naval Facilities Engineering Command Atlantic.Google Scholar
  129. US Department of the Navy. (2009). Gulf of Alaska Navy Training Activities Draft Environmental Impact Statement/Overseas Environmental Impact Statement. Silverdale, WA: Naval Facilities Engineering Command Northwest.Google Scholar
  130. van Bree, P. J. H., & Kristensen, I. (1974). On the intriguing stranding of four Cuvier’s beaked whales, Ziphius cavirostris G. Cuvier, 1823, on the Lesser Antillean island of Bonaire. Bijdragen tot de Dierkunde, 44, 235–238.Google Scholar
  131. van der Graaf, A. J., Ainslie, M. A., Andre, M., Brensing, K., Dalen, J., Dekeling, R. P. A., Robinson, S. M., Tasker, M. L., Thomsen, F., & Werner, S. (2012). European Marine Strategy Framework Directive--Good Environmental Status (MSFD GES). Report of the Technical Subgroup on Underwater Noise and other forms of energy, TSG Noise & Milieu Ltd., Brussels.Google Scholar
  132. Weir, C. R., & Dolman, S. J. (2007). Comparative review of the Regional Marine Mammal Mitigation Guidelines implemented during industrial seismic surveys, and guidance towards a worldwide standard. Journal of International Wildlife Law and Policy, 10, 1–27.CrossRefGoogle Scholar
  133. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.CrossRefGoogle Scholar
  134. Wenz, G. M. (1969). Low-frequency deep-water ambient noise along the Pacific Coast of the United States. US Navy Journal of Underwater Acoustics, 19, 423–444.Google Scholar
  135. Williams, R., Wright, A. J., Ashe, E., Blight, L. K., Bruintjes, R., Canessa, R., Clark, C. W., Cullis-Suzuki, S., Dakin, D. T., Erbe, C., Hammond, P. S., Merchant, N. D., O’Hara, P. D., Purser, J., Radford, A. N., Simpson, S. D., Thomas, L., & Wale, M. A. (2015). Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean & Coastal Management, 115, 17–24.CrossRefGoogle Scholar
  136. Wright, A. J. (2014). Reducing impacts of human ocean noise on cetaceans: Knowledge gap analysis and recommendations. Gland, Switzerland: WWF International.Google Scholar
  137. Wright, A. J., Soto, N. A., Baldwin, A. L., Bateson, M., Beale, C. M., Clark, C., Deak, T., Edwards, E. F., Fernandez, A., Godinho, A., Hatch, L. T., Kakuschke, A., Lusseau, D., Martineau, D., Romero, L. M., Weilgart, L. S., Wintle, B. A., Notarbartolo-di-Sciara, G., & Vidal, M. (2007). Do marine mammals experience stress related to anthropogenic noise? International Journal of Comparative Psychology, 20, 274–316.Google Scholar
  138. Wright, A. J., Deak, T., & Parsons, E. C. M. (2011). Size matters: Management of stress responses and chronic stress in beaked whales and other marine mammals may require larger exclusion zones. Marine Pollution Bulletin, 63(1–4), 5–9.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Wyatt, R. (2008). Review of Existing Data on Underwater Sounds Produced by the Oil and Gas Industry. Report Submitted to the Joint Industry Programme on Sound and Marine Life, London.Google Scholar
  140. Zirbel, K., Balint, P., & Parsons, E. C. M. (2011). Navy sonar, cetaceans and the US Supreme Court: A review of cetacean mitigation and litigation in the US. Marine Pollution Bulletin, 63(1–4), 40–48.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Marine Science and Technology, Curtin UniversityPerthAustralia
  2. 2.Cetacean Ecology and Acoustics LaboratorySchool of Veterinary Science, University of QueenslandGattonAustralia
  3. 3.Whale and Dolphin ConservationChippenhamUK

Personalised recommendations