Man-Made Sounds and Animals

  • Hans SlabbekoornEmail author
  • Robert J. Dooling
  • Arthur N. Popper
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 66)


The world is full of sounds of abiotic and biotic origin, and animals may use those sounds to gain information about their surrounding environment. However, it is becoming increasingly clear that the presence of man-made sounds has the potential to undermine the ability of animals to exploit useful environmental sounds. This volume provides an overview of how sounds may affect animals so that those interested in the effects of man-made sounds on animals can better understand the nature and breadth of potential impacts. This chapter provides an introduction to the issues associated with hearing and man-made sound and serves as a guide to the succeeding chapters. Chapters  2,  3,  4 and  5 cover the basic principles of sound and hearing, including an introduction to the acoustic ecology of the modern world in which man-made sounds have become very prominent. They also address how noisy conditions may hinder auditory perception, how hearing adaptations allow coping under acoustically challenging conditions, and how man-made sounds may damage the inner ear. The role of sound propagation in affecting signals and noise levels is treated for both terrestrial and aquatic habitats. This chapter also provides an overview of hearing and the effects of sound on particular taxa, which are the focus of Chaps.  6,  7,  8,  9, and  10. Those chapters address the concepts and insights in five different vertebrate taxa: fishes, amphibians and reptiles, birds, terrestrial mammals, and marine mammals. The overall aim of this volume is to stimulate and guide future investigations to fill in taxonomic and conceptual gaps in the knowledge about how man-made sounds affect animals.


Acoustic deterrence device Anthropogenic noise Comparative review Experimental design Man-made sound Noise impact studies Vertebrates 


Compliance with Ethics Requirements

Hans Slabbekoorn declares that he has no conflict of interest.

Robert J. Dooling declares that he has no conflict of interest.

Arthur N. Popper declares that he has no conflict of interest.


  1. Andrew, R. K., Howe, B. M., & Mercer, J. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online, 3, 65-70.CrossRefGoogle Scholar
  2. Babisch, W. (2002). The noise/stress concept, risk assessment and research needs. Noise and Health, 4, 1-11.PubMedGoogle Scholar
  3. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383, 1325-1332.CrossRefPubMedGoogle Scholar
  4. Bayne, E. M., Habib, L., & Boutin, S. (2008). Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology, 22, 1186-1193.CrossRefPubMedGoogle Scholar
  5. Bejder, L., Samuels, A., Whitehead, H., & Gales, N. (2006). Interpreting short-term behavioural responses to disturbance within a longitudinal perspective. Animal Behaviour, 72, 1149-1158.CrossRefGoogle Scholar
  6. Bomford, M., & O’Brien, P. H. (1990). Sonic deterrents in animal damage control: A review of device tests and effectiveness. Wildlife Society Bulletin, 18, 411-422.Google Scholar
  7. Brandt, M. J., Höschle, C., Diederichs, A., Betke, K., Matuschek, R., Witte, S., & Nehls, G. (2013). Far-reaching effects of a seal scarer on harbour porpoises, Phocoena phocoena. Aquatic Conservation: Marine and Freshwater Ecosystems, 23, 222-232.CrossRefGoogle Scholar
  8. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151-209.CrossRefGoogle Scholar
  9. Calisi, R. M., & Bentley, G. E. (2009). Lab and field experiments: Are they the same animal? Hormones and Behavior, 56, 1-10.CrossRefPubMedGoogle Scholar
  10. Carretta, J. V., & Barlow, J. (2011). Long-term effectiveness, failure rates, and “dinner bell” properties of acoustic pingers in a gillnet fishery. Marine Technology Society Journal, 45, 7-19.CrossRefGoogle Scholar
  11. Casper, B. M., Halvorsen, M. B., & Popper, A. N. (2012). Are sharks even bothered by a noisy environment? In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 93-97). New York: Springer-Verlag.CrossRefGoogle Scholar
  12. Chan, A. A. Y.-H., Giraldo-Perez, P., Smith, S., & Blumstein, D. T. (2010). Anthropogenic noise affects risk assessment and attention: The distracted prey hypothesis. Biology Letters, 6, 458-461.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cox, T. M., Read, A. J., Solow, A., & Tregenza, N. (2001). Will harbour porpoises (Phocoena phocoena) habituate to pingers? Journal of Cetacean Research Management, 3, 81-86.Google Scholar
  14. D’Amico, A., Gisiner, R. C., Ketten, D. R., Hammock, J. A., Johnson, C., Tyack, P. L., & Mead, J. (2009). Beaked whale strandings and naval exercises. Aquatic Mammals, 35, 452-472.CrossRefGoogle Scholar
  15. Duncan, A. J., Lucke, K., Erbe, C., & McCauley, R. D. (2016). Issues associated with sound exposure experiments in tanks. Proceedings of Meetings on Acoustics, 27, 070008.CrossRefGoogle Scholar
  16. Farcas, A., Thompson, P. M., & Merchant, N. D. (2016). Underwater noise modelling for environmental impact assessment. Environmental Impact Assessment Review, 57, 114-122.CrossRefGoogle Scholar
  17. Filiciotto, F., Vazzana, M., Celi, M., Maccarrone, V., Ceraulo, M., Buffa, G., Arizza, V., de Vincenzi, G., Grammauta, R., Mazzola, S., & Buscaino, G. (2016). Underwater noise from boats: Measurement of its influence on the behaviour and biochemistry of the common prawn (Palaemon serratus, Pennant 1777). Journal of Experimental Marine Biology and Ecology, 478, 24-33.CrossRefGoogle Scholar
  18. Fletcher, J. L., & Busnel, R.-G. (1978). Effects of Noise on Wildlife. New York: Academic Press.Google Scholar
  19. Francis, C. D., & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11, 305-313.CrossRefGoogle Scholar
  20. Frid, A., & Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6(1), 11.CrossRefGoogle Scholar
  21. Gomes, D. G. E., Page, R. A., Geipel, I., Taylor, R. C., Ryan, M. J., & Halfwerk, W. (2016). Bats perceptually weight prey cues across sensory systems when hunting in noise. Science, 353 6305, 1277-1280.CrossRefPubMedGoogle Scholar
  22. Goodwin, S. E., & Shriver, W. G. (2011). Effects of traffic noise on occupancy patterns of forest birds. Conservation Biology, 25, 406-411.PubMedGoogle Scholar
  23. Götz, T., & Janik, V. M. (2011). Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning. BMC Neuroscience, 12, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78, 1301-1307.CrossRefGoogle Scholar
  25. Halfwerk, W., & Slabbekoorn, H. (2015). Pollution going multimodal: The complex impact of the human-altered sensory environment on animal perception and performance. Biology Letters, 11, 20141051.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hawkins, A. D., & Popper, A. N. (2016). A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES Journal of Marine Science: Journal du Conseil, 74(3), 635-671.Google Scholar
  27. Hawkins, A. D., Pembroke, A. E., & Popper, A. N. (2015). Information gaps in understanding the effects of noise on fishes and invertebrates. Reviews in Fish Biology and Fisheries, 25, 39-64.CrossRefGoogle Scholar
  28. Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5-20.CrossRefGoogle Scholar
  29. Hoy, R. R., Popper, A. N., & Fay, R. R. (Eds.). (1998). Comparative Hearing: Insects. New York: Springer-Verlag.Google Scholar
  30. Jenni-Eiermann, S., Heynen, D., & Schaub, M. (2014). Effect of an ultrasonic device on the behaviour and the stress hormone corticosterone in feral pigeons. Journal of Pest Science, 87, 315-322.CrossRefGoogle Scholar
  31. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14, 1052-1061.CrossRefPubMedGoogle Scholar
  32. Klump, G. M. (1996). Bird communication in the noisy world. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and Evolution of Acoustic Communication in Birds (pp. 321-338). Ithaca, NY: Cornell University Press.Google Scholar
  33. Kunc, H. P., McLaughlin, K. E., & Schmidt, R. (2016). Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283, 20160839.CrossRefPubMedGoogle Scholar
  34. LaZerte, S. E., Slabbekoorn, H., & Otter, K. A. (2016). Learning to cope: Vocal adjustment to urban noise is correlated with prior experience in black-capped chickadees. Proceedings of the Royal Society B: Biological Sciences, 283, 20161058.CrossRefPubMedGoogle Scholar
  35. Lecker, C. A., Parsons, M. H., Lecker, D. R., Sarno, R., & Parsons, F. E. (2015). The temporal multimodal influence of optical and auditory cues on the repellent behaviour of ring-billed gulls (Larus delewarensis). Wildlife Research, 42, 232-240.CrossRefGoogle Scholar
  36. Le Prell, C. G., Henderson, D., Fay, R. R., & Popper, A. N. (Eds.). (2012). Noise-Induced Hearing Loss: Scientific Advances. New York: Springer-Verlag.CrossRefGoogle Scholar
  37. Lillis, A., Eggleston, D. B., & Bohnenstiehl, D. R. (2013). Oyster larvae settle in response to habitat-associated underwater sounds. PLoS ONE, 8, e79337.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247-260.CrossRefGoogle Scholar
  39. Mennit, D. J., Fristrup, K. M., & Nelson, L. (2015). A spatially explicit estimate of environmental noise exposure in the contiguous United States. The Journal of the Acoustical Society of America, 137, 2339-2340.CrossRefGoogle Scholar
  40. Miedema, H. M. E., & Vos, H. (2003). Noise sensitivity and reactions to noise and other environmental conditions The Journal of the Acoustical Society of America, 113, 1492-1504.CrossRefPubMedGoogle Scholar
  41. Mills, D. S., Bailey, S. L., & Thurstans, R. E. (2000). Evaluation of the welfare implications and efficacy of an ultrasonic ‘deterrent’ for cats. The Veterinary Record, 147, 678-680.PubMedGoogle Scholar
  42. Mockford, E. J., & Marshall, R. C. (2009). Effects of urban noise on song and response behaviour in great tits. Proceedings of the Royal Society B: Biological Sciences, 276, 2979-2985.CrossRefPubMedGoogle Scholar
  43. Møller, A. P. (2010). Interspecific variation in fear responses predicts urbanization in birds. Behavioral Ecology, 21, 365-371.CrossRefGoogle Scholar
  44. Montealegre-Z F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338, 968-971.CrossRefPubMedGoogle Scholar
  45. Montgomery, J. C., Jeffs, A. G., Simpson, S. D., Meekan, M., & Tindle, C. (2006). Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Advances in Marine Biology, 51, 143-196.CrossRefPubMedGoogle Scholar
  46. Mooney, T. A., Hanlon, R. T., Christensen-Dalsgaard, J., Madsen, P. T., Ketten, D. R., & Nachtigall, P. E. (2010). Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: Sensitivity to low-frequency particle motion and not pressure. Journal of Experimental Biology, 213, 3748-3759.CrossRefPubMedGoogle Scholar
  47. Morley, E. L., Jones, G., & Radford, A. N. (2014). The importance of invertebrates when considering the impacts of anthropogenic noise. Proceedings of the Royal Society B: Biological Sciences, 281, 20132683.CrossRefPubMedGoogle Scholar
  48. Munoz, N. E., & Blumstein, D. T. (2012). Multisensory perception in uncertain environments. Behavioural Ecology, 23, 457-462.CrossRefGoogle Scholar
  49. Murphy, E., & King, E. A. (2014). Environmental Noise Pollution. Burlington, MA: Elsevier.CrossRefGoogle Scholar
  50. Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: Mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825-837.CrossRefGoogle Scholar
  51. National Research Council. (1994). Low-Frequency Sound and Marine Mammals: Current Knowledge and Research Needs. Washington, DC: National Academies Press.Google Scholar
  52. National Research Council. (2000). Marine Mammals and Low-Frequency Sound: Progress Since 1994. Washington, DC: National Academies PressGoogle Scholar
  53. Nelson, S. H., Evans, A. D., & Bradbury, R. B. (2006). The efficacy of an ultrasonic cat deterrent. Applied Animal Behaviour Science, 96, 83-91.CrossRefGoogle Scholar
  54. Neo, Y. Y., Seitz, J., Kastelein, R. A., Winter, H. V., ten Cate, C., & Slabbekoorn, H. (2014). Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biological Conservation, 178, 65-73.CrossRefGoogle Scholar
  55. Neo, Y. Y., Hubert, J., Bolle, L., Winter, H. V., ten Cate, C., & Slabbekoorn, H. (2016). Sound exposure changes European seabass behaviour in a large outdoor floating pen: Effects of temporal structure and a ramp-up procedure. Environmental Pollution, 214, 26-34.CrossRefPubMedGoogle Scholar
  56. New, L. F., Clark, J. S., Costa, D. P., Fleishman, E., Hindell, M. A., Klanjšček, T., Lusseau, D., Kraus, S., McMahon, C. R., Robinson, P. W., Schick, R. S., Schwartz, L. K., Simmons, S. E., Thomas, L., Tyack, P., & Harwood, J. (2014). Using short-term measures of behaviour to estimate long-term fitness of southern elephant seals. Marine Ecology Progress Series, 496, 99-108.CrossRefGoogle Scholar
  57. Partan, S., & Marler, P. (1999). Communication goes multimodal. Science, 283, 1272–1273.CrossRefPubMedGoogle Scholar
  58. Pine, M. K., Jeffs, A. G., Wang, D., & Radford, C. A. (2016). The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean & Coastal Management, 127, 63-73.CrossRefGoogle Scholar
  59. Pohl, N. U., Leadbeater, E., Slabbekoorn, H., Klump, G. M., & Langemann, U. (2012). Great tits in urban noise benefit from high frequencies in song detection and discrimination. Animal Behaviour, 83, 711-721.CrossRefGoogle Scholar
  60. Popper, A. N., & Carlson, T. J. (1998). Application of sound and other stimuli to control fish behavior. Transactions of the American Fisheries Society, 127, 673-707.CrossRefGoogle Scholar
  61. Popper, A. N., & Hawkins, A. (Eds.). (2012). The Effects of Noise on Aquatic Life. New York: Springer-Verlag.Google Scholar
  62. Popper, A. N., & Hawkins, A. (Eds.). (2016). The Effects of Noise on Aquatic Life II. New York: Springer-Verlag.Google Scholar
  63. Ramp, D., Foale, C. G., Roger, E., & Croft, D. B. (2011). Suitability of acoustics as non-lethal deterrents for macropodids: The influence of origin, delivery and anti-predator behaviour. Wildlife Research, 38, 408-418.CrossRefGoogle Scholar
  64. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., Coppola, G., Geyer, M. A., Glanzman, D. L., Marsland, S., McSweeney, F. K., Wilson, D. A., Wu, C.-F., & Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92, 135-138.CrossRefPubMedGoogle Scholar
  65. Richardson, W. J., Greene, C. R., Malme, C. I., & Thomson, D. H. (1995). Marine Mammals and Noise. San Diego, CA: Academic Press.Google Scholar
  66. Rogers, P. H., Hawkins, A. D., Popper, A. N., Fay, R. R., & Gray, M. D. (2016). Parvulescu revisited: Small tank acoustics for bioacousticians. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 933-941). New York: Springer-Verlag.CrossRefGoogle Scholar
  67. Schaub, A., Ostwald, J., & Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211, 3174-3180.CrossRefPubMedGoogle Scholar
  68. Schakner, Z. A., & Blumstein, D. T. (2013). Behavioral biology of marine mammal deterrents: A review and prospectus. Biological Conservation, 167, 380-389.CrossRefGoogle Scholar
  69. Schlittmeier, S. J., Feil, A., Liebl, A., & Hellbrück, J. (2015). The impact of road traffic noise on cognitive performance in attention-based tasks depends on noise level even within moderate-level ranges. Noise & Health, 17, 148-157.CrossRefGoogle Scholar
  70. Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, C., & Briggs, J. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91, 982-1005.CrossRefPubMedGoogle Scholar
  71. Singh, N., & Davar, S. C. (2004). Noise pollution-Sources, effects and control. Journal of Human Ecology, 16, 181-187.CrossRefGoogle Scholar
  72. Slabbekoorn, H. (2012). The complexity of noise impact assessments: From birdsong to fish behavior. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 497-500). New York: Springer-Verlag.CrossRefGoogle Scholar
  73. Slabbekoorn, H. (2013). Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089-1099.CrossRefGoogle Scholar
  74. Slabbekoorn, H. (2016). Aiming for progress in understanding underwater noise impact on fish: Complementary need for indoor and outdoor studies. In: A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1057-1065). New York: Springer-Verlag.CrossRefGoogle Scholar
  75. Slabbekoorn, H., & den Boer-Visser, A. (2006). Cities change the songs of birds. Current Biology, 16, 2326-2331.CrossRefPubMedGoogle Scholar
  76. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5-e8.CrossRefGoogle Scholar
  77. Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: The impact of globally rising underwater sound levels on fish. Trends in Ecology & Evolution, 25, 419-427.CrossRefGoogle Scholar
  78. Sol, D., Lapiedra, O., & Gonález-Lagos, C. (2013). Behavioural flexibility for a life in the city. Animal Behaviour, 85, 1101-1112.CrossRefGoogle Scholar
  79. Spanier, E. (1980). The use of distress calls to repel night herons (Nycticorax nycticorax) from fish ponds. Journal of Applied Ecology, 17, 287-294.CrossRefGoogle Scholar
  80. Sun, J. W. C., & Narins, P. M. (2005). Anthropogenic sounds differentially affect amphibian call rate. Biological Conservation, 121, 419-427.CrossRefGoogle Scholar
  81. Sutherland, W. J. (1983). Aggregation and the ‘ideal free’ distribution. The Journal of Animal Ecology, 52, 821–828.CrossRefGoogle Scholar
  82. Swaddle, J. P., Moseley, D. L., Hinders, M. K., & Smith, E. P. (2016). A sonic net excludes birds from an airfield: Implications for reducing bird strike and crop losses. Ecological Applications, 26, 339-345.CrossRefPubMedGoogle Scholar
  83. Tablado, Z., & Jenni, L. (2015). Determinants of uncertainty in wildlife responses to human disturbance. Biological Reviews, 92, 216-233.CrossRefPubMedGoogle Scholar
  84. van der Sluijs, I., Gray, S. M., Amorim, M. C. P., Barber, I., Candolin, U., Hendry, A. P., Krahe, R., Maan, M. E., Utne-Palm, A. C., & Wagner, H.-J. (2011). Communication in troubled waters: Responses of fish communication systems to changing environments. Evolutionary Ecology, 25, 623-640.CrossRefGoogle Scholar
  85. Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I., & Simpson, S. D. (2010). Coral larvae move toward reef sounds. PLoS ONE, 5, e10660.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ward, A. I., Pietravalle, S., Cowan, D. P., & Delahay, R. J. (2008). Deterrent or dinner bell? Alteration of badger activity and feeding at baited plots using ultrasonic and water jet devices. Applied Animal Behaviour Science, 115, 221-232.CrossRefGoogle Scholar
  87. Warren, P. S., Katti, M., Ermann, M., & Brazel, A. (2006). Urban bioacoustics: It’s not just noise. Animal Behaviour, 71, 491-502.CrossRefGoogle Scholar
  88. Wiley, R. H. (2017). How noise determines the evolution of communication. Animal Behaviour, 124, 307-313.CrossRefGoogle Scholar
  89. Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69-94.CrossRefGoogle Scholar
  90. Wilkens, S. L., Stanley, J. A., & Jeffs, A. G. (2012). Induction of settlement in mussel (Perna canaliculus) larvae by vessel noise. Biofouling, 28, 65-72.CrossRefPubMedGoogle Scholar
  91. World Health Organization. (2011). Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe. Available at
  92. Yokoyama, H., & Nakamura, K. (1993). Aversive response of tree sparrows Passer montanus to distress call and the sound of paper flag. Applied Entomology and Zoology, 28, 359-370.CrossRefGoogle Scholar
  93. Zirbel, K., Balint, P., & Parsons, E. C. M. (2011). Public awareness and attitudes towards naval sonar mitigation for cetacean conservation: A preliminary case study in Fairfax County, Virginia (the DC Metro area). Marine Pollution Bulletin, 63, 49-55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hans Slabbekoorn
    • 1
    Email author
  • Robert J. Dooling
    • 2
  • Arthur N. Popper
    • 3
  1. 1.Faculty of ScienceInstitute of Biology Leiden (IBL), Leiden UniversityLeidenThe Netherlands
  2. 2.Department of PsychologyUniversity of MarylandCollege ParkUSA
  3. 3.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations