Skip to main content

Virtual Inertia Placement in Electric Power Grids

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA,volume 162)

Abstract

The past few years have witnessed a steady shift in the nature of power generation worldwide. While the share of renewable-based distributed generation has been on the rise, there has also been a decline in the conventional synchronous-based generation. The renewable-based power generation interfaced to the grid via power-electronic converters, however, does not provide rotational inertia, an inherent feature of synchronous machines. This absence of inertia has been highlighted as the prime source for the increasing frequency violations and severely impacting grid stability. As a countermeasure, virtual or synthetic inertia and damping emulated by advanced control techniques have been proposed. In this chapter, we study the optimal placement and tuning of these devices. We discuss two approaches based on the control notion of \(\mathcal H_2\) system gain characterizing the amplification of a disturbance and the spectral notion of pole-placement. A comprehensive analysis accompanied by iterative gradient-based algorithms is presented for both the approaches and validated on a three-area test case for comparison.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7822-9_12
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7822-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. AEMO (2016) Update report—black system event in South Australia on 28 September 2016. Tech. rep.

    Google Scholar 

  2. Anaya-Lara O, Hughes F, Jenkins N, Strbac G (2006) Contribution of DFIG-based wind farms to power system short-term frequency regulation. IEE Proc Gener Transm Distrib 153(2):164–170

    CrossRef  Google Scholar 

  3. Bergen AR, Hill DJ (1981) A structure preserving model for power system stability analysis. IEEE Trans Power Apparatus Syst 100(1):25–35

    CrossRef  Google Scholar 

  4. Bertsekas D (1995) Nonlinear programming. Athena Scientific, Nashua

    Google Scholar 

  5. Bevrani H, Ise T, Miura Y (2014) Virtual synchronous generators: a survey and new perspectives. Int J Electr Power Energy Syst 54:244-254

    CrossRef  Google Scholar 

  6. Borsche TS, Dörfler F (2017) On placement of synthetic inertia with explicit time-domain constraints. IEEE Trans Power Syst, Submitted. Available at https://arxiv.org/abs/1705.03244

  7. Borsche TS, Liu T, Hill DJ (2015) Effects of rotational inertia on power system damping and frequency transients. In: 54th IEEE conference on decision and control

    Google Scholar 

  8. D’Arco S, Suul JA (2013) Virtual synchionous machines—classification of implementations and analysis of equivalence to droop controllers for microgrids. Proceedings of the IEEE Powertech conference, pp 1–7

    Google Scholar 

  9. Dörfler F, Bullo F (2013) Kron reduction of graphs with applications to electrical networks. IEEE Trans Circuits Syst Regul Pap 60(1):150–163

    MathSciNet  CrossRef  Google Scholar 

  10. Ekanayake J, Jenkins N (2004) Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans Energy Convers 19(4):800–802

    CrossRef  Google Scholar 

  11. Ekanayake J, Holdsworth L, Jenkins N (2003) Control of DFIG wind turbines. Power Eng 17(1):28–32

    CrossRef  Google Scholar 

  12. Groß D, Bolognani S, Poolla BK, Dörfler F (2017) Increasing the resilience of low-inertia power systems by virtual inertia and damping. In: Bulk power systems dynamics and control symposium (iREP)

    Google Scholar 

  13. Guggilam SS, Zhao C, Dall’Anese E, Chen YC, Dhople SV (2017) Engineering inertial and primary-frequency response for distributed energy resources. arXiv preprint arXiv:170603612

    Google Scholar 

  14. Hughes F, Anaya-Lara O, Jenkins N, Strbac G (2005) Control of DFIG-based wind generation for power network support. IEEE Trans Power Syst 20(4):1958–1966

    CrossRef  Google Scholar 

  15. Jouini T, Arghir C, Dörfler F (2017, Submitted) Grid-forming control for power converters based on matching of synchronous machines. Available at https://arxiv.org/abs/1706.09495

  16. Koller M, Borsche T, Ulbig A, Andersson G (2015) Review of grid applications with the Zurich 1 MW battery energy storage system. Electr Power Syst Res 120:128–135

    CrossRef  Google Scholar 

  17. Lalor G, Ritchie J, Rourke S, Flynn D, O’Malley M (2004) Dynamic frequency control with increasing wind generation. In: IEEE power engineering society general meeting

    Google Scholar 

  18. Machowski J, Bialek J, Bumby J (2011) Power system dynamics: stability and control. Wiley, Hoboken

    Google Scholar 

  19. Mešanović A, Münz U, Heyde C (2016) Comparison of H-, H-2, and pole optimization for power system oscillation damping with remote renewable generation. In: IFAC workshop on control of transmission and distribution smart grids, pp 103–108

    CrossRef  Google Scholar 

  20. Milano F, Ortega A (2017) Frequency divider. IEEE Trans Power Syst 32(2):1493–1501

    Google Scholar 

  21. Morren J, de Haan S, Kling W, Ferreira J (2006) Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans Power Syst 21(1):433–434

    CrossRef  Google Scholar 

  22. Murthy DV, Haftka RT (1988) Derivatives of eigenvalues and eigenvectors of a general complex matrix. Int J Numer Methods Eng 26:293–311

    MathSciNet  CrossRef  Google Scholar 

  23. Pirani M, Hashemi E, Fidan B, Simpson-Porco JW (2016) H- robustness in mechanical and power networks. IFAC-PapersOnLine 50(1):5196–5201

    Google Scholar 

  24. Poolla BK, Bolognani S, Dörfler F (2017) Optimal placement of virtual inertia in power grids. IEEE Trans Autom Control 62(12):6209–6220

    MathSciNet  CrossRef  Google Scholar 

  25. Rakhshani E, Remon D, Cantarellas AM, Rodriguez P (2016) Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener Transm Distrib 10(6):1458–1469

    CrossRef  Google Scholar 

  26. Rautert T, Sachs EW (1997) Computational design of optimal output feedback controllers. SIAM J Optim 7(3):837–852

    MathSciNet  CrossRef  Google Scholar 

  27. RG-CE System Protection & Dynamics Sub Group (2016) Frequency stability evaluation criteria for the synchronous zone of continental Europe. Tech. rep., ENTSO-E

    Google Scholar 

  28. Sauer PW, Pai M (1997) Power system dynamics and stability. Urbana 51:61,801

    Google Scholar 

  29. Slootweg J, Kling W (2002) Impacts of distributed generation on power system transient stability. In: Proceedings of IEEE power engineering society summer meeting

    Google Scholar 

  30. Soni N, Doolla S, Chandorkar MC (2013) Improvement of transient response in microgrids using virtual inertia. IEEE Trans Power Delivery 28(3):1830–1838

    CrossRef  Google Scholar 

  31. Svenska kraftnät, Statnett, Fingrid and Energinetdk (2016) Challenges and opportunities for the nordic power system. Tech. rep.

    Google Scholar 

  32. Torres M, Lopes LA (2009) Virtual synchronous generator control in autonomous wind-diesel power systems. In: Proceedings of IEEE electrical power & energy conference

    Google Scholar 

  33. Ulbig A, Borsche TS, Andersson G (2014) Impact of low rotational inertia on power system stability and operation. In: Proceedings of 19th IFAC world congress

    CrossRef  Google Scholar 

  34. Vournas CD, Papadias BC (1987) Power system stabilization via parameter optimization-application to the Hellenic interconnected system. IEEE Trans Power Syst 2(3):615–622

    CrossRef  Google Scholar 

  35. Vu Van T, Visscher K, Diaz J, Karapanos V, Woyte A, Albu M, Bozelie J, Loix T, Federenciuc D (2010) Virtual synchronous generator: an element of future grids. In: IEEE PES innovative smart grid technologies conference Europe

    Google Scholar 

  36. Wang S, Hu J, Yuan X (2015) Virtual synchronous control for grid-connected DFIG-based wind turbines. IEEE J Emerging Sel Top Power Electron 3(4):932–944

    CrossRef  Google Scholar 

  37. Zhong QC, Weiss G (2011) Synchronverters: inverters that mimic synchronous generators. IEEE Trans Ind Electron 58(4):1259–1267

    CrossRef  Google Scholar 

  38. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Dörfler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Poolla, B.K., Groß, D., Borsche, T., Bolognani, S., Dörfler, F. (2018). Virtual Inertia Placement in Electric Power Grids. In: Meyn, S., Samad, T., Hiskens, I., Stoustrup, J. (eds) Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7822-9_12

Download citation