Skip to main content

The Biorefinery Approach

  • Reference work entry
  • First Online:
Energy from Organic Materials (Biomass)
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Bioeconomy:

Economy which is predominantly based on biomass as raw material for the production of food, chemicals, energy, and other consumer goods.

Biorefinery:

A facility that converts biomass into a broad range of products for various markets (food, feed, materials, energy) and which is characterized by low energy demand through high process integration and low waste production as well as a high flexibility towards changing markets for raw materials and products.

Human development index (HDI):

A statistical composite index developed from the UN that targets three basic dimensions of human development: A long and healthy life (measured by the life expectancy at birth), the ability to acquire knowledge (measured by mean and expected years of schooling), and a decent standard of living (measured by gross national income per capita).

Platform:

Products of the primary refinery (e.g., sugar, syngas, cellulose).

Primary refinery:

The part of a biorefinery where the biomass is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. European Comission (2012) Communication from the comission to the European parlament, the soucil, the European economic and social committee of the regions: Innovating for Sustainable Growth: A Bioeconomy for Europe. http://ec.europa.eu/research/bioeconomy/pdf/official-strategy_en.pdf. Accessed 05 Oct 2017

  2. The Whitev House (2012) National bioeconomy blueprint. Ind Biotechnol 8(3):97–102

    Article  Google Scholar 

  3. Oborne M (2010) The bioeconomy to 2030: designing a policy agenda. OECD Obs (278):35–38

    Google Scholar 

  4. Federal Government of Germany (2012) Biorefineries roadmap, 1st edn. Druckerei Schlesener KG, Berlin

    Google Scholar 

  5. Star-COLIBRI (2011) Joint European biorefinery vision for 2030

    Google Scholar 

  6. Trinh TN, Jensen PA, Dam-Johansen K et al (2013) Comparison of lignin, macroalgae, wood, and straw fast pyrolysis. Energy Fuel 27(3):1399–1409. https://doi.org/10.1021/ef301927y

    Article  Google Scholar 

  7. United Nations (2015) World population prospects. Key findings and advanced tables. The 2015 Revision

    Google Scholar 

  8. United Nations (2013) The rise of the South: human progress in a diverse world. United Nations, New York/London

    Book  Google Scholar 

  9. FAO (2017) FAOSTAT statistical database. Available at http://faostat.fao.org/

  10. Raschka A, Carus M (2012) Industrial material use of biomass basic data for Germany, Europe and the world. nova-Institut GmbH, Hürth

    Google Scholar 

  11. Bringezu S (2014) Assessing global land use: balancing consumption with sustainable supply. United Nations Environment Programme, Nairobi

    Google Scholar 

  12. Alexandratos N, Bruinsma J, et al. (2012) World agriculture towards 2030/2050: the 2012 revision

    Google Scholar 

  13. FAO (2009) High level expert forum-how to feed the World in 2050. FAO, Rome

    Google Scholar 

  14. OECD/FAO (2015) OECD-FAO agricultural outlook 2015. OECD Publishing, Paris

    Google Scholar 

  15. FAO (2009) State of the world’s forests 2009. Electronic Publishing Policy and Support Branch, Rome

    Google Scholar 

  16. OECD/FAO (2016) OECD-FAO Agricultural outlook 2016–2025. OECD Publishing, Paris

    Google Scholar 

  17. Euler Hermes Economic Research (2016) Global sector report – paper. http://www.eulerhermes.com/economic-research/sector-risks/Global-Paper-Report/Pages/default.aspx. Accessed 8 Dec 2016

  18. Schaefer K (2015) Outlook for the world paper grade pulp market. http://www.cepi.org/system/files/public/documents/events/EuropeanPaperWeek2015/Schaeffer%20-%20RISI.pdf. Accessed 8 Dec 2016

  19. Europeen Comission (2015) Research and inovation – bioeconomy. https://ec.europa.eu/research/bioeconomy/index.cfm?pg=policy&lib=bbpp. Accessed 20 Jun 2016

  20. European Comission (2016) Growth-internal market, industry entrepreneurship and SME’s-Bio-based products. http://ec.europa.eu/growth/sectors/biotechnology/bio-based-products/index_en.htm. Accessed 24 Jul 2016

  21. Piotrowski S, Carus M, Essel R (2015) Global bioeconomy in the conflict between biomass supply and demand. nova paper #7 on bio-based economy. www.bio-based.eu/nova-papers

  22. Carus M (2016) Markttrends, aktuelle Herausforderungen und Perspektiven für Produkte aus biobasierten Materialien im europäischen Markt. Biopolymere 2016, Straubing

    Google Scholar 

  23. REN21 Renewables (2017) Global status report. REN21 Secretariat, Paris

    Google Scholar 

  24. ecoprog GmbH (2016) Waste to Energy 2016/2017: Technologies, plants, projects, players and backgrounds of the global thermal waste treatment business. https://www.ecoprog.com/publikationen/abfallwirtschaft/waste-to-energy.htm. Accessed 05 Oct 2017

  25. Enerdata (2014) Market data and CO2 emissions. http://www.enerdata.net/enerdatauk/knowledge/subscriptions/database/energy-market-data-and-co2-emissions-data.php. Accessed 5 Sept 2017

  26. FuturENERGY (2014) Over 1,200 new biomass power plants to be constructed within the next 10 years. http://futurenergyweb.es/en/1200-new-biomass-power-plants-constructed-within-next-10-years/. Accessed 5 Sept 2017

  27. Eurobserv’ER (2016) Barometer für feste Biomasse. https://www.eurobserv-er.org/. Accessed 5 Sept 2017

  28. Eurobserv’ER (2016) The State of renewable energies in Europe. https://www.eurobserv-er.org/. Accessed 5 Sept 2017

  29. Eurobserv’ER (2017) Regenerative Energien allgemein. https://www.eurobserv-er.org/. Accessed 5 Sept 2017

  30. Bloche-Daub K, Witt J, Kaltschmitt M et al (2015) Erneuerbare Energien: globaler Stand 2014. BWK 67(7/8):6–23

    Google Scholar 

  31. IEA (2015) World energy statistics 2015. https://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2015.html. Accessed 5 Sept 2017

  32. Schubert R, Schellnhuber HJ, Buchmann N et al (2009) Future bioenergy and sustainable land use. Earthscan, London

    Google Scholar 

  33. IEA (2013) Medium-term renewable energy market report 2013: market trends and projections to 2018. OECD Publishing, Paris

    Google Scholar 

  34. IEA (2011) Biofuels for transport: IEA technology roadmap. www.iea.org/roadmaps

  35. EIA (2016) International energy outlook 2016: with projections to 2040

    Google Scholar 

  36. BP (2017) BP energy outlook – 2017 edition. bp.com/energyoutlook. Accessed 12 Sept 2017

  37. BP (2017) BP statistical review of world energy – June 2017, 66th edition

    Google Scholar 

  38. Kaltschmitt M, Thrän D, Bloche-Daub K et al (2016) Bioenergie – Beitrag zum heutigen und zukünftigen Energiesystem. Z Energiewirtsch 40(4):181–197. https://doi.org/10.1007/s12398-016-0184-5

    Article  Google Scholar 

  39. Kaltschmitt M, Magdowski A (2017) Bioenergy within the global energy systems – current and future contribution. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

  40. National Research Council (2000) Biobased industrial products: research and commercialization priorities. National Academies Press, Washington, DC

    Google Scholar 

  41. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. https://doi.org/10.1007/s00253-003-1537-7

    Article  Google Scholar 

  42. van Dyne DL, Blase MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 114–123

    Google Scholar 

  43. de Jong E, van Ree R, Kwant IK (2009) Biorefineries: adding value to the sustainable utilisation of biomass. Int Energy Agency 42(2009):1–16

    Google Scholar 

  44. Frank M, Hartge EU, Heinrich S et al (2014) Lignin pyrolysis in a circulating fluidized bed – influence of temperature and char formation on bed material. In: 11th international conference on fluidized bed technology, Beijing

    Google Scholar 

  45. Pandey A, Höfer R, Larroche C et al (eds) (2015) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam

    Google Scholar 

  46. Südzucker AG (2017) Die Südzucker Unternehmenspräsentation. http://www.suedzucker.de/de/Downloads/Unternehmenspraesentation/. Accessed 5 Sept 2017

  47. Borregaard (2017) Homepage. http://www.borregaard.com. Accessed 18 Sept 2017

  48. Inbicon (2017) Homepage. http://www.inbicon.com/en. Accessed 28 Apr 2017

  49. Diep NQ, Sakanishi K, Nakagoshi N et al (2012) Biorefinery: concepts, current status, and development trends. Int J Biomass Renew 2(1):1–8

    Google Scholar 

  50. de JE, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Höfer R, Larroche C et al (eds) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam, pp 3–33

    Google Scholar 

  51. Rackemann DW, Zhang Z, Doherty WOS (2016) Conversion of sugarcane carbohydrates into platform chemicals. In: O’Hara IM, Mundree SG (eds) Sugarcane-based biofuels and pioproducts. Wiley, Hoboken, pp 207–235

    Google Scholar 

  52. European Commission (2017) Agriculture and rural development – sugar. https://ec.europa.eu/agriculture/sugar_en. Accessed 15 Sept 2017

  53. Rozman Č, Škraba A, Pažek K et al (2014) The development of sugar beet production and processing simulation model – a system dynamics approach to support decision-making processes. Organ 47(2):99. https://doi.org/10.2478/orga-2014-0011

    Article  Google Scholar 

  54. Asadi M (2006) Beet-sugar handbook. Wiley, Hoboken

    Book  Google Scholar 

  55. British sugar (2010) Britisch sugar UK & Ireland – corporate sustainability report 2009/10

    Google Scholar 

  56. Hunter D (1978) Papermaking: the history and technique of an ancient craft, 2nd edn. Dover Publications, New York

    Google Scholar 

  57. Bajpai P (2017) Pulp and paper industry: chemical recovery. Elsevier, Amsterdam

    Book  Google Scholar 

  58. Food and Agriculture Organization of the United Nations (2015) Pulp and paper capacities: survey

    Google Scholar 

  59. Biermann CJ (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, San Diego

    Google Scholar 

  60. Rødsrud G, Lersch M, Sjöde A (2012) History and future of world’s most advanced biorefinery in operation. Biomass Bioenergy 46:46–59. https://doi.org/10.1016/j.biombioe.2012.03.028

    Article  Google Scholar 

  61. Huang H-J, Ramaswamy S (2013) Overview of biomass conversion processes and separation and purification technologies in biorefineries. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, Chichester

    Google Scholar 

  62. Eisentraut A (2010) Potential and perspectives in major economies and developing countries, 2010/01. IEA energy papers

    Google Scholar 

  63. Verbio AG (2017) Homepage. https://www.verbio.de/. Accessed 15 Sept 2017

  64. CropEnergies AG (2017) Homepage. http://www.cropenergies.com/de/Home/. Accessed 15 Sept 2017

  65. Poet LL (2017) Homepage: Biofuel. http://www.poet.com/biofuel

  66. Martín M, Grossmann IE (2013) On the systematic synthesis of sustainable biorefineries. Ind Eng Chem Res 52(9):3044–3064. https://doi.org/10.1021/ie2030213

    Article  Google Scholar 

  67. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134. https://doi.org/10.1002/bbb.4

    Article  Google Scholar 

  68. Luo L, van der Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock – technical, economic and environmental considerations. Bioresour Technol 101(13):5023–5032. https://doi.org/10.1016/j.biortech.2009.12.109

    Article  Google Scholar 

  69. Gregg D, Saddler JN (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 57-58(1):711–727. https://doi.org/10.1007/BF02941753

    Article  Google Scholar 

  70. Renewable Fuels Association (2016) Industry statistics – world fuel ethanol production. http://ethanolrfa.org/resources/industry/statistics/#1454098996479-8715d404-e546. Accessed 29 Sept 2016

  71. Renewable Fuels Association (2016) Poket guide to ethanol 2016. http://ethanolrfa.org/wp-content/uploads/2016/02/10823-RFA.pdf. Accessed 29 Sept 2016

  72. Lenz V, Naumann K, Bloche-Daub K et al (2016) Erneuerbare Energien – Erkenntnisstand 2015 in Deutschland. BWK 68(5):60–80

    Google Scholar 

  73. Kaltschmitt M, Hartmann H, Hofbauer H (eds) (2016) Energie aus Biomasse. Springer, Berlin/Heidelberg

    Google Scholar 

  74. Eckel H (2006) Energiepflanzen: Daten für die Planung des Energiepflanzenanbaus. KTBL-Datensammlung mit Internetangebot. KTBL, Darmstadt

    Google Scholar 

  75. Kaltschmitt M, Merten D, Fröhlich N et al (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit: Energiegewinnung aus Biomasse. Wissenschaftlicher Beirat der Bundesregierung WBGU, Berlin

    Google Scholar 

  76. Brosowski A, Adler P, Erdmann G et al. (2015)Biomassepotential von Rest- und Abfallstoffen: Status quo in Deutschland, vol 36. Fachagentur Nachwachsende Rohstoffe e. V. (FNR), https://mediathek.fnr.de/band-36-biomassepotenziale-von-rest-und-abfallstoffen.html Accessed 05 Oct 2017

  77. Mielke T (2017) World market of agricultural commodities. https://www.oilworld.biz/t/statistics/commodities. Accessed 5 Sept 2017

  78. Notley SM, Norgren M (2009) Lignin: functional biomaterial with potential in surface chemistry and nanoscience. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 173–205

    Chapter  Google Scholar 

  79. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  80. Saake B, Lehnen R (2000) Lignin. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 21–36

    Google Scholar 

  81. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845

    Article  Google Scholar 

  82. Laurichesse S, Avérous L (2016) Towards biobased aromatic polymers from lignins. In: Kalia S, Avérous L (eds) Biodegradable and biobased polymers for environmental and biomedical applications. Wiley, Hoboken, pp 385–436

    Chapter  Google Scholar 

  83. Bresinsky A, Jarosch B, Körner C (2008) Strasburger – Lehrbuch der Botanik, 36. Aufl. Spektrum, Akad. Verl, Heidelberg [u.a]

    Google Scholar 

  84. Eurostat (2016) Verbrauch von Düngemitteln in der Landwirtschaft in Deutschland nach Nährstoffarten in den Jahren 2001 bis 2014

    Google Scholar 

  85. Nuhn P, Wessjohann L (2006) Naturstoffchemie: Mikrobielle, pflanzliche und tierische Naturstoffe; 80 Tab, 4. Aufl. Hirzel, Stuttgart

    Google Scholar 

  86. Brennicke A, Schopfer P (2010) Pflanzenphysiologie, 7. Aufl. SpringerLink: Bücher. Spektrum Akademischer Verlag, Heidelberg

    Book  Google Scholar 

  87. Legrum W (2011) Riechstoffe, zwischen Gestank und Duft: Vorkommen, Eigenschaften und Anwendung von Riechstoffen und deren Gemischen, 1. Aufl. Studium. Vieweg + Teubner in GWV Fachverlage GmbH, Wiesbaden

    Book  Google Scholar 

  88. Prinz E (2014) Färberpflanzen: Anleitung zum Färben, Verwendung in Kultur und Medizin, 2., durchgesehene und korrigierte Auflage. Schweizerbart’sche, E, Stuttgart

    Google Scholar 

  89. Amon T, Kryvoruchko V, Amon B et al. (2004) Biogaserträge aus landwirtschaftlichen Gärgütern. In Tagungsband 10. Alpenländisches Expertenforum (ed) Höhere Bundeslehr- und Forschungsanstalt (HBLFA) Raumberg-Gumpenstein, Raumberg-Gumpenstein

    Google Scholar 

  90. Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11(2):129–137

    Article  Google Scholar 

  91. Deutscher Verein des Gas- und Wasserfaches e.V. (2013) Gasbeschaffenheit/Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung: G260/G262, DVGW Regelwerk, Bonn

    Google Scholar 

  92. Schuster M, Kolbe H, Bauer K et al. (2015) Zwischenfrüchte im ökologischen Landbau: Sächsische Landesanstalt für Landwirtschaft, available at (http://www.landwirtschaft.sachsen.de/LfL)

  93. Institut für Tierernährung und Futterwirtschaft (2013) Eiweißfuttermittel in der Rinderfütterung, 2. Aufl., Bayerische Landesanstalt für Landwirtschaft (LfL), Freising

    Google Scholar 

  94. Landeskuratorium der Erzeugerringe für tierische Veredelung in Bayern e.V. (LKV) (2015) Futterwerte Kleegrassilagen (LKV-Labor Grub)

    Google Scholar 

  95. Önal EP, Uzun BB, Pütün AE (2011) Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol 92(5):879–885

    Article  Google Scholar 

  96. Strobl M (2017) Biogasausbeuten verschiedener Substrate: Ökonomisch regenerative Energie. Datenbank. http://www.lfl.bayern.de/iba/energie/049711/. Accessed 6 Jun 2017

  97. Vestjens Stroverwerking BV (2017) Gehäckseltes Weizenstroh: Milchvieh- und Jungviehrationen. http://www.vestjens.de/milchvieh-gehackseltes-weizenstroh. Accessed 6 Jun 2017

  98. Weller N (2009) Halmgutartige Biomasse als Brennstoff: Möglichleiten dezentraler Energieversorgung, Deutsches Biomasseforschungszentrum (DBFZ) Greifswald http://duene-greifswald.de/doc/weller_kf.pdf, Accessed 06 Jul 2017

  99. Pronyk C, Mazza G (2012) Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol 106:117–124. https://doi.org/10.1016/j.biortech.2011.11.071

    Article  Google Scholar 

  100. Köhler S (2012) Biogaspotenziale: Erkennen, Erforschen, Erwirtschaften. Bornimer Agrartechnische Berichte. IHK Potsdam, Potsdam

    Google Scholar 

  101. Kaiser FL (2007) Einfluss der stofflichen Zusammensetzung auf die Verdaulichkeit nachwachsender Rohstoffe beim anaeroben Abbau in Biogasreaktoren. Dissertation, Technische Universität München

    Google Scholar 

  102. Friedrich E, Friedrich H, Lincke M et al (2010) Verbesserte Konvertierbarkeit lignocellulosehaltiger Substrate in der Nassfermentation – Extrusion von Stroh. Chemie Ingenieur Technik 82(8):1177–1181. https://doi.org/10.1002/cite.201000081

    Article  Google Scholar 

  103. Bauer A, Bosch P, Friedl A et al (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 142(1):50–55. https://doi.org/10.1016/j.jbiotec.2009.01.017

    Article  Google Scholar 

  104. Ferreira LC, Donoso-Bravo A, Nilsen PJ et al (2013) Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour Technol 143:251–257. https://doi.org/10.1016/j.biortech.2013.05.065

    Article  Google Scholar 

  105. Kamm B, Hille C, Schönicke P (2009) Grüne Bioraffinerie-Demonstrationsanlage im Havelland. Internet-Zeitschrift des Leibniz-Instituts für interdisziplinäre Studien e.V. (LIFIS) https://www.leibniz-institut.de/archiv/kamm_17_10_09.pdf, Accessed 05.10.2017

  106. Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96(5):537–544. https://doi.org/10.1016/j.biortech.2004.06.019

    Article  Google Scholar 

  107. Francis F, Sabu A, Nampoothiri K et al (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J 15(2):107–115. https://doi.org/10.1016/S1369-703X(02)00192-4

    Article  Google Scholar 

  108. dos Santos TC, Gomes DPP, Bonomo RCF et al (2012) Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133(4):1299–1304. https://doi.org/10.1016/j.foodchem.2011.11.115

    Article  Google Scholar 

  109. Fachagentur Nachwachsende Rohstoffe (FNR): Leitfaden Biogas-Von der Gewinnung zur Nutzung, 6th ed., nachwachsende-rohstoffe.de, Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow-Prüzen, 2013

    Google Scholar 

  110. Pospiech J, Ullrich M, Göttling S et al (2014) Hygienisierung von Wirtschaftsdünger und Gärresten. 1st edn, Landesamt für Umwelt, Landwirtschaft und Geologie, (37), https://publikationen.sachsen.de/bdb/artikel/20436. Accessed 5 Oct 2017

  111. Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory NREL, Golden

    Google Scholar 

  112. Raussen T, Kern M (2016) Optimale Aufbereitung von Gärresten aus der Bioabfallbehandlung: Ein Leitfaden, 2. Aufl Ministerium für Umwelt, Klima und Energiewirtschaft - Baden-Wüttenberg, Stuttgart

    Google Scholar 

  113. Velasquez JA, Ferrando F, Farriol X et al (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37(3–4):269–278. https://doi.org/10.1007/s00226-003-0182-8

    Article  Google Scholar 

  114. Zhang W, Ma Y, Wang C et al (2013) Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crop Prod 43:326–333. https://doi.org/10.1016/j.indcrop.2012.07.037

    Article  Google Scholar 

  115. O’Hara IM (2016) The sugarcane industry, biofuel, and bioproduct perspectives. In: O’Hara IM, Mundree SG (eds) Sugarcane-based biofuels and pioproducts. Wiley, Hoboken, pp 3–21

    Google Scholar 

  116. Australien society of sugar cane technologists (ed) (2004) Proceedings- 26th annual conference Australian society of sugar cane technologists, vol 26. Watson Ferguson and Company, Brisbane

    Google Scholar 

  117. Broatfoot R (2001) Planning changes to the process sections of raw sugar factories for increased cogeneration. In: Australien society of sugar cane technologists (ed) Proceedings 2001 Brisbane

    Google Scholar 

  118. O’Hara IM, Zhang Z, Rackemann DW et al (2013) Prospects for the development of sugarcane biorefineries. In: Hogarth DM (ed) 28th International Society of Sugar Cane Technologists conference, Sao Paulo

    Google Scholar 

  119. Reid MJ, Rein PW (1983) Steam balance for the new Felixton II mill. In: Proceedings South African Sugar Technologists’ Association 57 pp 85–91

    Google Scholar 

  120. Rein PW (2007) Prospects for the conversion of a sugar mill into a biorefinery. In: XXVI Congress, International Society of Sugar Cane Technologists, ICC, Durban, pp.44–60

    Google Scholar 

  121. Lavarack BP, Hodgson JJ, Broadfoot R et al (2004) Improving the energy efficiency of sugar factories: case study for Pioneer Mill. In: Australien society of sugar cane technologists (ed) Proceedings- 26th annual conference Australian Society of Sugar Cane Technologists. Watson Ferguson and Company, Brisbane, pp 7–11

    Google Scholar 

  122. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559. https://doi.org/10.1039/c5py00263j

    Article  Google Scholar 

  123. Werpy T, Petersen G, Holladay JE, Aden A, Bozell JJ (2004) Top value added chemicals from biomass: vol 1. Results of screening for potential candidates from sugars and synthesis gas. http://www1.eere.energy.gov/bioenergy/pdfs/35523.pdf. Accessed 11 Aug 2014

  124. E4tech, RE-CORD and WUR (2015) From the Sugar Platform to biofuels and biochemicals. Final report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791

    Google Scholar 

  125. Bozell JJ, Holladay JE, Johnson D et al. (2007) Top value added chemicals from biomass: Volume II: Results of screening for potential candidates from biorefinery lignin Pacific Northwest National Laboratory, Richland, Washington, PNNL-16983

    Google Scholar 

  126. Perez-Cantu L, Liebner F, Smirnova I (2014) Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater 195:303–310. https://doi.org/10.1016/j.micromeso.2014.04.018

    Article  Google Scholar 

  127. Illovo sugar group (2016) Homepage. https://www.illovosugar.co.za/Products/Furfural-and-Derivatives. Accessed 20 Dec 2016

  128. Marcelli S (2014) Ethanol from sugarcane lignocellulosic residues – opportunities for process improvement and production cost reduction. Dissertation, Lund University

    Google Scholar 

  129. Singh BP (2010) Industrial crops and uses. CABI, Wallingford

    Book  Google Scholar 

  130. Manechini C, Júnior AR, Donzelli JL (2005) Benefits and problems of trash left in the field. In: Hassuani SJ, Leal MRLV, Macedo IC (eds) Biomass power generation: sugar cane bagasse and trash. CTC/PNUD, Piracicaba/Brasília, pp 25–35

    Google Scholar 

  131. Dias Paes LA, de Oliveira MA (2005) Potential trash biomass of the sugar cane plant. In: Hassuani SJ, Leal MRLV, Macedo IC (eds) Biomass power generation: sugar cane bagasse and trash. CTC/PNUD, Piracicaba/Brasília, pp 19–23

    Google Scholar 

  132. Franco HC, Magalhães PS, Cavalett O et al (2011) How much trash to removal from sugarcane field to produce bioenergy? In: Proceedings Brazilian BioEnergy Science and Technology, Campos do Jordão

    Google Scholar 

  133. Canilha L, Kumar Chandel A, dos Santos Milessi TS et al (2012, 2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. https://doi.org/10.1155/2012/989572

  134. Chandel AK, da Silva SS, Carvalho W et al (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20. https://doi.org/10.1002/jctb.2742

    Article  Google Scholar 

  135. Alonso Pippo W, Luengo CA, Alonsoamador Morales Alberteris L et al (2011) Energy recovery from sugarcane-trash in the light of 2nd generation biofuels. Part 1: current situation and environmental aspects. Waste Biomass Valoriz 2(1):1–16. https://doi.org/10.1007/s12649-010-9048-0

    Article  Google Scholar 

  136. Dias MO, Junqueira TL, Cavalett O et al (2013) Cogeneration in integrated first and second generation ethanol from sugarcane. Chem Eng Res Des 91(8):1411–1417. https://doi.org/10.1016/j.cherd.2013.05.009

    Article  Google Scholar 

  137. Pereira SC, Maehara L, Machado CMM et al (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44. https://doi.org/10.1186/s13068-015-0224-0

    Article  Google Scholar 

  138. Murugan AM, Ranjit Singh A (2013) Sugarcane. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC Press, Boca Raton, pp 415–454

    Google Scholar 

  139. Laluce C, Leite GR, Zavitoski BZ et al (2016) Fermentation of sugarcane juice and molasses for ethanol production. In: O’Hara IM, Mundree SG (eds) Sugarcane-based biofuels and pioproducts. Wiley, Hoboken, pp 55–85

    Google Scholar 

  140. Perez R (1995) Molasses. In: FAO (ed) Proceedings of the First FAO electronic onferenz on tropical feeds and feeding systems

    Google Scholar 

  141. Fernandez-Lopez CL, Torrestiana-Sanchez B, Salgado-Cervantes MA et al (2012) Use of sugarcane molasses “B” as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioprocess Biosyst Eng 35(4):605–614. https://doi.org/10.1007/s00449-011-0633-9

    Article  Google Scholar 

  142. Robins TR, Speight RE (2016) Chemicals manufacture from fermentation of sugarcane products. In: O’Hara IM, Mundree SG (eds) Sugarcane-based biofuels and pioproducts. Wiley, Hoboken, pp 111–136

    Google Scholar 

  143. Liu J, Sun Z, Zhong Y et al (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25(5):1447–1456. https://doi.org/10.1007/s10811-013-9974-x

    Article  Google Scholar 

  144. Takahashi M, Morita T, Wada K et al (2011) Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using starmerella bombicola NBRC 10243. J Oleo Sci 60(5):267–273. https://doi.org/10.5650/jos.60.267

    Article  Google Scholar 

  145. Deshmukh AN, Nipanikar-Gokhale P, Jain R (2016) Engineering of bacillus subtilis for the production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 179(2):321–331. https://doi.org/10.1007/s12010-016-1996-9

    Article  Google Scholar 

  146. Ikram-Ul H, Ali S, Qadeer MA et al (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour Technol 93(2):125–130. https://doi.org/10.1016/j.biortech.2003.10.018

    Article  Google Scholar 

  147. Sharma M, Patel SN, Lata K et al (2016) A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. Bioresour Technol 219:311–318. https://doi.org/10.1016/j.biortech.2016.07.131

    Article  Google Scholar 

  148. Srivastava AK, Tripathi AD, Jha A et al (2015) Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). J Food Sci Technol 52(6):3571–3578. https://doi.org/10.1007/s13197-014-1423-6

    Article  Google Scholar 

  149. Xia J, Xu J, Hu L et al (2016) Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Prep Biochem Biotechnol 46(8):798–802. https://doi.org/10.1080/10826068.2015.1135464

    Article  Google Scholar 

  150. Zhang Y-Y, Y-F B, Liu J-Z (2015) Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiol (Praha) 60(5):393–398. https://doi.org/10.1007/s12223-014-0371-x

    Article  Google Scholar 

  151. Liu Y-P, Zheng P, Sun Z-H et al (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99(6):1736–1742. https://doi.org/10.1016/j.biortech.2007.03.044

    Article  Google Scholar 

  152. Cardoso TF, Cavalett O, Chagas MF et al (2013) Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Sci Agric (Piracicaba, Braz) 70(5):353–360. https://doi.org/10.1590/S0103-90162013000500010

    Article  Google Scholar 

  153. Rodrigues Filho JP (2005) Trash recovery costs. In: Hassuani SJ, Leal MRLV, IdC M (eds) Biomass power generation: sugar cane bagasse and trash. CTC/PNUD, Piracicaba/Brasília, pp 74–84

    Google Scholar 

  154. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12(4): 539. https://doi.org/10.1039/b922014c

    Article  Google Scholar 

  155. Grand View Research (2014) Levulinic acid market analysis and segment forecasts to 2020. Grand View Research, San Francisco

    Google Scholar 

  156. Leonard RH (1956) Levulinic acid as a basic chemical raw material. Ind Eng Chem 48(8):1330–1341. https://doi.org/10.1021/ie50560a033

    Article  Google Scholar 

  157. Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5(2):198–214. https://doi.org/10.1002/bbb.267

    Article  Google Scholar 

  158. Horvat J, Klaić B, Metelko B et al (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114. https://doi.org/10.1016/S0040-4039(00)94793-2

    Article  Google Scholar 

  159. Hayes DJ, Fitzpatrick S, Hayes MHB et al (2005) The biofine process– production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Wiley, Weinheim, pp 139–164

    Chapter  Google Scholar 

  160. Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565. https://doi.org/10.1016/j.rser.2015.06.032

    Article  Google Scholar 

  161. Fitzpatrick SW (1990) Lignocellulose degradation to furfural and levulinic acid. US4897497 A

    Google Scholar 

  162. van Dam HE, Kieboom APG, van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch/Stärke 38(3):95–101. https://doi.org/10.1002/star.19860380308

    Article  Google Scholar 

  163. CCM Data & Business Intelligence (2016) China’s market price of furfural bounces back in April: Press release/market report. www.cnchemicals.com/Press/86385-CCM:%20Chinas%20market%20price%20of%20furfural%20bounces%20back%20in%20April.html. Accessed 6 Apr 2017

  164. Zorn H, Czermak P (2014) Biotechnology of food and feed additives, vol 143. Springer, Berlin/Heidelberg

    Google Scholar 

  165. Dumbrepatil A, Adsul M, Chaudhari S et al (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74(1):333–335. https://doi.org/10.1128/AEM.01595-07

    Article  Google Scholar 

  166. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534. https://doi.org/10.1007/s00253-006-0779-6

    Article  Google Scholar 

  167. Auras R, Lim L-T, Selke SEM et al (2010) Poly(Lactic acid). Wiley, Hoboken

    Book  Google Scholar 

  168. Xu K, Xu P (2014) Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29. https://doi.org/10.1016/j.biortech.2013.11.057

    Article  Google Scholar 

  169. Chaisu K, Charles AL, Guu Y-K et al (2014) Optimization lactic acid production from molasses renewable raw material through response surface methodology with lactobacillus casei M-15. APCBEE Procedia 8:194–198. https://doi.org/10.1016/j.apcbee.2014.03.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kaltschmitt .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schmidt, L.M., Andersen, L.F., Dieckmann, C., Lamp, A., Kaltschmitt, M. (2019). The Biorefinery Approach. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_1050

Download citation

Publish with us

Policies and ethics