Skip to main content

Aberrant Cellular Pathways in PKD

  • Chapter
  • First Online:
Polycystic Kidney Disease

Abstract

Cystic kidney diseases are a heterogeneous group of genetic, developmental, and acquired disorders characterized by dilated or cystic tubular segments caused by dysregulation of tubular morphology. Several pathologic hallmarks have been identified to explain the abnormal cellular phenotypes associated with cystic epithelium. These include enhanced proliferation, increased apoptosis, remodeling of the extracellular matrix, a secretory phenotype, dysregulated metabolism, and an inability to maintain planar cell polarity. Extensive work over the last few decades has identified many of the genes responsible for inherited forms of cystic kidney disease. This has provided an entry into the identification of cystogenic pathways that underlie the pathologic hallmarks that have been described. In this review, we discuss our current understanding of some of the key signaling pathways that are disrupted in the most common form of renal cystic disease, autosomal dominant polycystic kidney disease (ADPKD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol. 2009;20(1):23–35.

    Article  PubMed  CAS  Google Scholar 

  2. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70(5):1305–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30(3):259–69.

    Article  PubMed  Google Scholar 

  4. Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119(3):428–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med. 2009;60:321–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol. 2015;11(9):515–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell. 1994;78(4):725.

    Google Scholar 

  8. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  PubMed  CAS  Google Scholar 

  9. Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67(5):792–810.

    Article  PubMed  Google Scholar 

  10. Baert L. Hereditary polycystic kidney disease (adult form): a microdissection study of two cases at an early stage of the disease. Kidney Int. 1978;13(6):519–25.

    Article  PubMed  CAS  Google Scholar 

  11. Reeders ST. Multilocus polycystic disease. Nat Genet. 1992;1(4):235–7.

    Article  PubMed  CAS  Google Scholar 

  12. Qian F, Watnick TJ. Somatic mutation as mechanism for cyst formation in autosomal dominant polycystic kidney disease. Mol Genet Metab. 1999;68(2):237–42.

    Article  PubMed  CAS  Google Scholar 

  13. Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell. 1996;87(6):979–87.

    Article  PubMed  CAS  Google Scholar 

  14. Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, et al. Somatic PKD2 mutations in individual kidney and liver cysts support a "two-hit" model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1999;10(7):1524–9.

    PubMed  CAS  Google Scholar 

  15. Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, et al. Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet. 2000;25(2):143–4.

    Article  PubMed  CAS  Google Scholar 

  16. Brasier JL, Henske EP. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest. 1997;99(2):194–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Torra R, Badenas C, San Millan JL, Perez-Oller L, Estivill X, Darnell A. A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am J Hum Genet. 1999;65(2):345–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, et al. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell. 1998;2(2):247–51.

    Article  PubMed  CAS  Google Scholar 

  19. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell. 1998;93(2):177–88.

    Article  PubMed  CAS  Google Scholar 

  20. Piontek KB, Huso DL, Grinberg A, Liu L, Bedja D, Zhao H, et al. A functional floxed allele of Pkd1 that can be conditionally inactivated in vivo. J Am Soc Nephrol. 2004;15(12):3035–43.

    Article  PubMed  Google Scholar 

  21. Garcia-Gonzalez MA, Outeda P, Zhou Q, Zhou F, Menezes LF, Qian F, et al. Pkd1 and Pkd2 are required for normal placental development. PLoS One. 2010;5(9).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet. 2013;45(9):1004–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int. 2009;75(8):848–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jiang ST, Chiou YY, Wang E, Lin HK, Lin YT, Chi YC, et al. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. Am J Pathol. 2006;168(1):205–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet. 2004;13(24):3069–77.

    Article  PubMed  CAS  Google Scholar 

  26. Gallagher AR, Germino GG, Somlo S. Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis. 2010;17(2):118–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med. 2007;13(12):1490–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, Breuning MH, de Heer E, Peters DJ. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet. 2007;16(24):3188–96.

    Article  PubMed  CAS  Google Scholar 

  29. Takakura A, Contrino L, Beck AW, Zhou J. Pkd1 inactivation induced in adulthood produces focal cystic disease. J Am Soc Nephrol. 2008;19(12):2351–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD, et al. Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet. 2009;18(14):2523–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Leonhard WN, Happe H, Peters DJ. Variable cyst development in autosomal dominant polycystic kidney disease: the biologic context. J Am Soc Nephrol. 2016;27(12):3530–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet. 2008;17(11):1578–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34(4):355–6.

    Article  PubMed  CAS  Google Scholar 

  34. Calvet JP. Ciliary signaling goes down the tubes. Nat Genet. 2003;33(2):113–4.

    Article  PubMed  CAS  Google Scholar 

  35. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002;13(10):2508–16.

    Article  PubMed  CAS  Google Scholar 

  36. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol. 2002;12(11):R378–80.

    Article  PubMed  CAS  Google Scholar 

  37. Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008;85:23–61.

    Article  PubMed  CAS  Google Scholar 

  39. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 2010;141(7):1208–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123(Pt 4):499–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Singla V, Reiter JF. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science. 2006;313(5787):629–33.

    Article  PubMed  CAS  Google Scholar 

  42. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest. 2014;124(6):2315–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ma M, Gallagher AR, Somlo S. Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb Perspect Biol. 2017;9:a028209.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002;4(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature. 2000;408(6815):990–4.

    Article  PubMed  CAS  Google Scholar 

  47. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+−permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001;98(3):1182–7.

    Article  PubMed  CAS  Google Scholar 

  48. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, et al. Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun. 2001;282(1):341–50.

    Article  PubMed  CAS  Google Scholar 

  49. Kottgen M. TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta. 2007;1772(8):836–50.

    Article  PubMed  CAS  Google Scholar 

  50. Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, et al. Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun. 2001;282(5):1251–6.

    Article  PubMed  CAS  Google Scholar 

  51. Cantiello HF. Regulation of calcium signaling by polycystin-2. Am J Physiol Ren Physiol. 2004;286(6):F1012–29.

    Article  CAS  Google Scholar 

  52. Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, et al. Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 2004;18(6):740–2.

    Article  PubMed  CAS  Google Scholar 

  53. Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell. 2016;167(3):763–73. e11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, et al. Structure of the polycystic kidney disease TRP channel polycystin-2 (PC2). Nat Struct Mol Biol. 2017;24(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  55. Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V, De Sanctis S, et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel polycystin-2. Nat Struct Mol Biol. 2017;24(2):123–30.

    Article  PubMed  CAS  Google Scholar 

  56. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet. 1997;16(2):179–83.

    Article  PubMed  CAS  Google Scholar 

  57. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.

    Article  PubMed  CAS  Google Scholar 

  58. Busch T, Kottgen M, Hofherr A. TRPP2 ion channels: critical regulators of organ morphogenesis in health and disease. Cell Calcium. 2017;66:25–32.

    Article  PubMed  CAS  Google Scholar 

  59. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci. 2006;119(Pt 7):1383–95.

    Article  PubMed  CAS  Google Scholar 

  60. Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005;24(4):705–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. Pflugers Arch. 2005;451(1):286–93.

    Article  PubMed  CAS  Google Scholar 

  62. Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 2006;15(9):1465–73.

    Article  PubMed  CAS  Google Scholar 

  63. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001;184(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  64. Praetorius HA, Spring KR. Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol. 2003;191(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  65. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  PubMed  CAS  Google Scholar 

  66. Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, et al. Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol. 2006;17(4):1015–25.

    Article  PubMed  CAS  Google Scholar 

  67. Spasic M, Jacobs CR. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol. 2017;71:42–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Patel A, Honore E. Polycystins and renovascular mechanosensory transduction. Nat Rev Nephrol. 2010;6(9):530–8.

    Article  PubMed  CAS  Google Scholar 

  69. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008;182(3):437–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. DeCaen PG, Delling M, Vien TN, Clapham DE. Direct recording and molecular identification of the calcium channel of primary cilia. Nature. 2013;504(7479):315–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE. Primary cilia are specialized calcium signalling organelles. Nature. 2013;504(7479):311–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Delling M, Indzhykulian AA, Liu X, Li Y, Xie T, Corey DP, et al. Primary cilia are not calcium-responsive mechanosensors. Nature. 2016;531(7596):656–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kleene SJ, Kleene NK. The native TRPP2-dependent channel of murine renal primary cilia. Am J Physiol Ren Physiol. 2017;312(1):F96–F108.

    Article  CAS  Google Scholar 

  74. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, et al. Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999;274(40):28557–65.

    Article  PubMed  CAS  Google Scholar 

  75. Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem. 2009;284(52):36431–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Santoso NG, Cebotaru L, Guggino WB. Polycystin-1, 2, and STIM1 interact with IP(3)R to modulate ER Ca release through the PI3K/Akt pathway. Cell Physiol Biochem. 2011;27(6):715–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem. 2005;280(50):41298–306.

    Article  PubMed  CAS  Google Scholar 

  78. Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci U S A. 2007;104(15):6454–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Woodward OM, Li Y, Yu S, Greenwell P, Wodarczyk C, Boletta A, et al. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS One. 2010;5(8):e12305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bagur R, Hajnoczky G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol Cell. 2017;66(6):780–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Putney JW. Capacitative calcium entry: from concept to molecules. Immunol Rev. 2009;231(1):10–22.

    Article  PubMed  CAS  Google Scholar 

  82. Weber KH, Lee EK, Basavanna U, Lindley S, Ziegelstein RC, Germino GG, et al. Heterologous expression of polycystin-1 inhibits endoplasmic reticulum calcium leak in stably transfected MDCK cells. Am J Physiol Ren Physiol. 2008;294(6):F1279–86.

    Article  CAS  Google Scholar 

  83. Mekahli D, Sammels E, Luyten T, Welkenhuyzen K, van den Heuvel LP, Levtchenko EN, et al. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium. 2012;51(6):452–8.

    Article  PubMed  CAS  Google Scholar 

  84. Qian Q, Hunter LW, Li M, Marin-Padilla M, Prakash YS, Somlo S, et al. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet. 2003;12(15):1875–80.

    Article  PubMed  CAS  Google Scholar 

  85. Geng L, Boehmerle W, Maeda Y, Okuhara DY, Tian X, Yu Z, et al. Syntaxin 5 regulates the endoplasmic reticulum channel-release properties of polycystin-2. Proc Natl Acad Sci U S A. 2008;105(41):15920–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, et al. TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J. 2009;28(5):490–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25(1):18–32.

    Article  PubMed  CAS  Google Scholar 

  88. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60.

    Article  PubMed  CAS  Google Scholar 

  89. Nims N, Vassmer D, Maser RL. Transmembrane domain analysis of polycystin-1, the product of the polycystic kidney disease-1 (PKD1) gene: evidence for 11 membrane-spanning domains. Biochemistry. 2003;42(44):13035–48.

    Article  PubMed  CAS  Google Scholar 

  90. Kim H, Xu H, Yao Q, Li W, Huang Q, Outeda P, et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun. 2014;5:5482.

    Article  PubMed  Google Scholar 

  91. Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest. 2015;125(2):607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cai Y, Fedeles SV, Dong K, Anyatonwu G, Onoe T, Mitobe M, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest. 2014;124(12):5129–44.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim S, Nie H, Nesin V, Tran U, Outeda P, Bai CX, et al. The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol. 2016;18(7):752–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Halls ML, Cooper DM. Adenylyl cyclase signalling complexes – pharmacological challenges and opportunities. Pharmacol Ther. 2017;172:171–80.

    Article  PubMed  CAS  Google Scholar 

  95. Wallace DP. Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta. 2011;1812(10):1291–300.

    Article  PubMed  CAS  Google Scholar 

  96. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther. 2006;109(3):366–98.

    Article  PubMed  CAS  Google Scholar 

  97. Chang XB, Tabcharani JA, Hou YX, Jensen TJ, Kartner N, Alon N, et al. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J Biol Chem. 1993;268(15):11304–11.

    PubMed  CAS  Google Scholar 

  98. Xu ZC, Yang Y, Hebert SC. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem. 1996;271(16):9313–9.

    Article  PubMed  CAS  Google Scholar 

  99. Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC. cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4-2. J Biol Chem. 2004;279(44):45753–8.

    Article  PubMed  CAS  Google Scholar 

  100. Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic. 2009;10(3):275–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yamaguchi T, Nagao S, Kasahara M, Takahashi H, Grantham JJ. Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis. 1997;30(5):703–9.

    Article  PubMed  CAS  Google Scholar 

  102. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.

    Article  PubMed  CAS  Google Scholar 

  103. Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.

    Article  PubMed  CAS  Google Scholar 

  104. Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, et al. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol. 2006;17(10):2821–31.

    Article  PubMed  CAS  Google Scholar 

  105. Starremans PG, Li X, Finnerty PE, Guo L, Takakura A, Neilson EG, et al. A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5′ end of Pkd1. Kidney Int. 2008;73(12):1394–405.

    Article  PubMed  CAS  Google Scholar 

  106. Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest. 2012;122(11):4257–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000;57(4):1460–71.

    Article  PubMed  CAS  Google Scholar 

  108. Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004;66(3):964–73.

    Article  PubMed  CAS  Google Scholar 

  109. Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol. 2015;11(8):451–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rees S, Kittikulsuth W, Roos K, Strait KA, Van Hoek A, Kohan DE. Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease. J Am Soc Nephrol. 2014;25(2):232–7.

    Article  PubMed  CAS  Google Scholar 

  111. Sussman CR, Ward CJ, Leightner AC, Smith JL, Agarwal R, Harris PC, et al. Phosphodiesterase 1A modulates cystogenesis in zebrafish. J Am Soc Nephrol. 2014;25(10):2222–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wang X, Yamada S, LaRiviere WB, Ye H, Bakeberg JL, Irazabal MV, et al. Generation and phenotypic characterization of Pde1a mutant mice. PLoS One. 2017;12(7):e0181087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Putnam WC, Swenson SM, Reif GA, Wallace DP, Helmkamp GM Jr, Grantham JJ. Identification of a forskolin-like molecule in human renal cysts. J Am Soc Nephrol. 2007;18(3):934–43.

    Article  PubMed  CAS  Google Scholar 

  114. Parnell SC, Magenheimer BS, Maser RL, Rankin CA, Smine A, Okamoto T, et al. The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun. 1998;251(2):625–31.

    Article  PubMed  CAS  Google Scholar 

  115. Gabow PA, Kaehny WD, Johnson AM, Duley IT, Manco-Johnson M, Lezotte DC, et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 1989;35(2):675–80.

    Article  PubMed  CAS  Google Scholar 

  116. Seeman T, Dusek J, Vondrak K, Blahova K, Simkova E, Kreisinger J, et al. Renal concentrating capacity is linked to blood pressure in children with autosomal dominant polycystic kidney disease. Physiol Res. 2004;53(6):629–34.

    PubMed  CAS  Google Scholar 

  117. de Bree FM, Burbach JP. Structure-function relationships of the vasopressin prohormone domains. Cell Mol Neurobiol. 1998;18(2):173–91.

    Article  PubMed  Google Scholar 

  118. Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27(11):4131–7.

    Article  PubMed  CAS  Google Scholar 

  119. Zittema D, Boertien WE, van Beek AP, Dullaart RP, Franssen CF, de Jong PE, et al. Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin J Am Soc Nephrol. 2012;7(6):906–13.

    Article  PubMed  CAS  Google Scholar 

  120. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wang X, Gattone V 2nd, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.

    Article  PubMed  CAS  Google Scholar 

  122. Hopp K, Hommerding CJ, Wang X, Ye H, Harris PC, Torres VE. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol. 2015;26(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  123. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC, et al. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int. 2003;63(6):1983–94.

    Article  PubMed  CAS  Google Scholar 

  125. Hanaoka K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol. 2000;11(7):1179–87.

    PubMed  CAS  Google Scholar 

  126. Parker E, Newby LJ, Sharpe CC, Rossetti S, Streets AJ, Harris PC, et al. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system. Kidney Int. 2007;72(2):157–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4(12):937–47.

    Article  PubMed  CAS  Google Scholar 

  128. Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 2004;279(39):40419–30.

    Article  PubMed  CAS  Google Scholar 

  129. Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol. 2006;17(1):178–87.

    Article  PubMed  CAS  Google Scholar 

  130. Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998;78(4):1165–91.

    Article  PubMed  CAS  Google Scholar 

  131. Grantham JJ, Ye M, Gattone VH 2nd, Sullivan LP. In vitro fluid secretion by epithelium from polycystic kidneys. J Clin Invest. 1995;95(1):195–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Sullivan LP, Wallace DP, Grantham JJ. Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol. 1998;9(5):903–16.

    PubMed  CAS  Google Scholar 

  133. Rajagopal M, Wallace DP. Chloride secretion by renal collecting ducts. Curr Opin Nephrol Hypertens. 2015;24(5):444–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ye M, Grantham JJ. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med. 1993;329(5):310–3.

    Article  PubMed  CAS  Google Scholar 

  135. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  PubMed  CAS  Google Scholar 

  136. Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2017;74(1):93–115.

    Article  PubMed  CAS  Google Scholar 

  137. Brill SR, Ross KE, Davidow CJ, Ye M, Grantham JJ, Caplan MJ. Immunolocalization of ion transport proteins in human autosomal dominant polycystic kidney epithelial cells. Proc Natl Acad Sci U S A. 1996;93(19):10206–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hanaoka K, Devuyst O, Schwiebert EM, Wilson PD, Guggino WB. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Phys. 1996;270(1 Pt 1):C389–99.

    Article  CAS  Google Scholar 

  139. Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 1996;50(1):208–18.

    Article  PubMed  CAS  Google Scholar 

  140. Magenheimer BS, St John PL, Isom KS, Abrahamson DR, De Lisle RC, Wallace DP, et al. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(−) Co-transporter-dependent cystic dilation. J Am Soc Nephrol. 2006;17(12):3424–37.

    Article  PubMed  CAS  Google Scholar 

  141. Tradtrantip L, Sonawane ND, Namkung W, Verkman AS. Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J Med Chem. 2009;52(20):6447–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Snyder DS, Tradtrantip L, Yao C, Kurth MJ, Verkman AS. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J Med Chem. 2011;54(15):5468–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Persu A, Devuyst O, Lannoy N, Materne R, Brosnahan G, Gabow PA, et al. CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2000;11(12):2285–96.

    PubMed  CAS  Google Scholar 

  144. O’Sullivan DA, Torres VE, Gabow PA, Thibodeau SN, King BF, Bergstralh EJ. Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1998;32(6):976–83.

    Article  PubMed  Google Scholar 

  145. Xu N, Glockner JF, Rossetti S, Babovich-Vuksanovic D, Harris PC, Torres VE. Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol. 2006;19(4):529–34.

    PubMed  Google Scholar 

  146. Lebeau C, Hanaoka K, Moore-Hoon ML, Guggino WB, Beauwens R, Devuyst O. Basolateral chloride transporters in autosomal dominant polycystic kidney disease. Pflugers Arch. 2002;444(6):722–31.

    Article  PubMed  CAS  Google Scholar 

  147. Buchholz B, Schley G, Faria D, Kroening S, Willam C, Schreiber R, et al. Hypoxia-inducible factor-1alpha causes renal cyst expansion through calcium-activated chloride secretion. J Am Soc Nephrol. 2014;25(3):465–74.

    Article  PubMed  CAS  Google Scholar 

  148. Buchholz B, Teschemacher B, Schley G, Schillers H, Eckardt KU. Formation of cysts by principal-like MDCK cells depends on the synergy of cAMP- and ATP-mediated fluid secretion. J Mol Med (Berl). 2011;89(3):251–61.

    Article  CAS  Google Scholar 

  149. Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease – a contiguous gene syndrome. Nat Genet. 1994;8(4):328–32.

    Article  PubMed  CAS  Google Scholar 

  150. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–56.

    Article  PubMed  CAS  Google Scholar 

  151. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  PubMed  CAS  Google Scholar 

  152. Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol. 2005;16(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  153. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.

    Article  PubMed  CAS  Google Scholar 

  155. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90.

    Article  PubMed  CAS  Google Scholar 

  156. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Boletta A. Emerging evidence of a link between the polycystins and the mTOR pathways. PathoGenetics. 2009;2(1):6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009;29(9):2359–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 2009;18(1):151–63.

    Article  PubMed  CAS  Google Scholar 

  160. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A. 2006;103(14):5466–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zafar I, Ravichandran K, Belibi FA, Doctor RB, Edelstein CL. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010;78(8):754–61.

    Article  PubMed  CAS  Google Scholar 

  162. Belibi F, Ravichandran K, Zafar I, He Z, Edelstein CL. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am J Physiol Ren Physiol. 2011;300(1):F236–44.

    Article  CAS  Google Scholar 

  163. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant. 2006;21(3):598–604.

    Article  PubMed  CAS  Google Scholar 

  164. Shillingford JM, Piontek KB, Germino GG, Weimbs T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol. 2010;21(3):489–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol. 2005;16(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  166. Wu M, Wahl PR, Le Hir M, Wackerle-Men Y, Wuthrich RP, Serra AL. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res. 2007;30(4):253–9.

    Article  PubMed  Google Scholar 

  167. Zafar I, Belibi FA, He Z, Edelstein CL. Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant. 2009;24(8):2349–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Kim HJ, Edelstein CL. Mammalian target of rapamycin inhibition in polycystic kidney disease: from bench to bedside. Kidney Res Clin Pract. 2012;31(3):132–8.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820–9.

    Article  PubMed  CAS  Google Scholar 

  170. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):830–40.

    Article  PubMed  CAS  Google Scholar 

  171. Canaud G, Knebelmann B, Harris PC, Vrtovsnik F, Correas JM, Pallet N, et al. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: what is the appropriate serum level? Am J Transplant. 2010;10(7):1701–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Watnick T, Germino GG. mTOR inhibitors in polycystic kidney disease. N Engl J Med. 2010;363(9):879–81.

    Article  PubMed  CAS  Google Scholar 

  173. Shillingford JM, Leamon CP, Vlahov IR, Weimbs T. Folate-conjugated rapamycin slows progression of polycystic kidney disease. J Am Soc Nephrol. 2012;23(10):1674–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Grantham JJ. Polycystic kidney disease: neoplasia in disguise. Am J Kidney Dis. 1990;15(2):110–6.

    Article  PubMed  CAS  Google Scholar 

  175. Menezes LF, Zhou F, Patterson AD, Piontek KB, Krausz KW, Gonzalez FJ, et al. Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4alpha as a disease modifier. PLoS Genet. 2012;8(11):e1003053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Menezes LF, Germino GG. Systems biology of polycystic kidney disease: a critical review. Wiley Interdiscip Rev Syst Biol Med. 2015;7(1):39–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A. 2003;100(7):4012–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013;19(4):488–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Chiaravalli M, Rowe I, Mannella V, Quilici G, Canu T, Bianchi V, et al. 2-deoxy-d-glucose ameliorates PKD progression. J Am Soc Nephrol. 2016;27(7):1958–69.

    Article  PubMed  CAS  Google Scholar 

  180. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Rowe I, Boletta A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol Dial Transplant. 2014;29(8):1480–6.

    Article  PubMed  CAS  Google Scholar 

  183. Menezes LF, Lin CC, Zhou F, Germino GG. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine. 2016;5:183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Warner G, Hein KZ, Nin V, Edwards M, Chini CC, Hopp K, et al. Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol. 2016;27(5):1437–47.

    Article  PubMed  CAS  Google Scholar 

  185. Kipp KR, Rezaei M, Lin L, Dewey EC, Weimbs T. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol. 2016;310(8):F726–F31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  PubMed  CAS  Google Scholar 

  189. Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L, et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A. 2011;108(6):2462–7.

    Article  PubMed  PubMed Central  Google Scholar 

  190. King JD Jr, Fitch AC, Lee JK, McCane JE, Mak DO, Foskett JK, et al. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. Am J Phys Cell Phys. 2009;297(1):C94–101.

    Article  CAS  Google Scholar 

  191. Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J Clin Invest. 2000;105(12):1711–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Zhou X, Fan LX, Sweeney WE Jr, Denu JM, Avner ED, Li X. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J Clin Invest. 2013;123(7):3084–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin Shanghai. 2013;45(1):51–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Watnick MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grazioli, A., Outeda, P., Watnick, T. (2018). Aberrant Cellular Pathways in PKD. In: Cowley, Jr., B., Bissler, J. (eds) Polycystic Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7784-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7784-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7782-6

  • Online ISBN: 978-1-4939-7784-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics