Gahunia HK, Pritzker KP. Effect of exercise on articular cartilage. Orthop Clin North Am. 2012;43:187–99.
PubMed
CrossRef
Google Scholar
Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, Bayat M. Preliminary analysis of knee stress in full extension landing. Clinics (Sao Paulo). 2013;68:1180–8.
Google Scholar
Asanbaeva A, Masuda K, Thonar EJ, Klisch SM, Sah RL. Regulation of immature cartilage growth by IGF-I, TGF-β1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol. 2008;7:263–76.
Google Scholar
Murphy CL, Sambanis A. Effect of oxygen tension on chondrocyte extracellular matrix accumulation. Connect Tissue Res. 2001;42:87–96.
CAS
PubMed
CrossRef
Google Scholar
Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB. Oxygen, nitric oxide and articular cartilage. Eur Cell Mater. 2007;13:56–65.
CAS
PubMed
CrossRef
Google Scholar
Schrobback K, Malda J, Crawford RW, Upton Z, Leavesley DI, Klein TJ. Effects of oxygen on zonal marker expression in human articular chondrocytes. Tissue Eng Part A. 2012;18:920–33.
CAS
PubMed
CrossRef
Google Scholar
Mobasheri A, Richardson S, Mobasheri R, Shakibaei M, Hoyland JA. Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol. 2005;20:1327–38.
CAS
PubMed
Google Scholar
Pfander D, Gelse K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol. 2007;19:457–62.
CAS
PubMed
CrossRef
Google Scholar
Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11:224.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Guilak F, Jones WR, Ting-Beall HP, Lee GM. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage. 1999;7:59–70.
CAS
PubMed
CrossRef
Google Scholar
Knight MM, Ross JM, Sherwin AF, Lee DA, Bader DL, Poole CA. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim Biophys Acta. 2001;1526:141–6.
CAS
PubMed
CrossRef
Google Scholar
Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage. 2001;9:561–9.
CAS
PubMed
CrossRef
Google Scholar
Maroudas A, Bullough P, Swanson SA, Freeman MA. The permeability of articular cartilage. J Bone Joint Surg Br. 1968;50:166–77.
Google Scholar
Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol. 2006;20:983–1002.
CAS
PubMed
CrossRef
Google Scholar
Dancevic CM, McCulloch DR. Current and emerging therapeutic strategies for preventing inflammation and aggrecanase-mediated cartilage destruction in arthritis. Arthritis Res Ther. 2014;16:429.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res. 2004;427:S96–103.
CrossRef
Google Scholar
Poole CA. Articular cartilage chondrons: form, function and failure. J Anat. 1997;191(Pt 1):1–13.
PubMed
PubMed Central
CrossRef
Google Scholar
Poole CA, Flint MH, Beaumont BW. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5:509–22.
CAS
PubMed
CrossRef
Google Scholar
Chang J, Poole CA. Sequestration of type VI collagen in the pericellular microenvironment of adult chondrocytes cultured in agarose. Osteoarthritis Cartilage. 1996;4:275–85.
CAS
PubMed
CrossRef
Google Scholar
Poole CA, Wotton SF, Duance VC. Localization of type IX collagen in chondrons isolated from porcine articular cartilage and rat chondrosarcoma. Histochem J. 1988;20:567–74.
CAS
PubMed
CrossRef
Google Scholar
von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum. 1992;35:806–11.
PubMed
CrossRef
Google Scholar
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32.
CAS
PubMed
CrossRef
Google Scholar
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. Tissue Eng Part B Rev. 2015;21:267–77.
PubMed
CrossRef
Google Scholar
Vonk LA, de Windt TS, Kragten AH, Beekhuizen M, Mastbergen SC, Dhert WJ, Lafeber FP, Creemers LB, Saris DB. Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site. Osteoarthritis Cartilage. 2014;22:1910–7.
CAS
PubMed
CrossRef
Google Scholar
Guo H, Torzilli PA. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression. Acta Biomater. 2016;29:170–9.
CAS
PubMed
CrossRef
Google Scholar
Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31.
CAS
PubMed
CrossRef
Google Scholar
Maroudas A, Palla G, Gilav E. Racemization of aspartic acid in human articular cartilage. Connect Tissue Res. 1992;28(3):161–9.
CAS
PubMed
CrossRef
Google Scholar
Kempson GE. Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis. 1982;41:508–11.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kempson GE. Mechanical properties of articular cartilage and their relationship to matrix degradation and age. Ann Rheum Dis. 1975;34(Suppl 2):111–3.
Google Scholar
Kempson GE. Mechanical properties of articular cartilage. J Physiol. 1972;223:23P.
CAS
PubMed
Google Scholar
Klein TJ, Chaudhry M, Bae WC, Sah RL. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J Biomech. 2007;40:182–90.
PubMed
CrossRef
Google Scholar
Chan EF, Harjanto R, Asahara H, Inoue N, Masuda K, Bugbee WD, Firestein GS, Hosalkar HS, Lotz MK, Sah RL. Structural and functional maturation of distal femoral cartilage and bone during postnatal development and growth in humans and mice. Orthop Clin North Am. 2012;43:173–85.
PubMed
PubMed Central
CrossRef
Google Scholar
Asanbaeva A, Tam J, Schumacher BL, Klisch SM, Masuda K, Sah RL. Articular cartilage tensile integrity: modulation by matrix depletion is maturation-dependent. Arch Biochem Biophys. 2008;474:175–82.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li LP, Cheung JT, Herzog W. Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput. 2009;47:607–15.
CAS
PubMed
CrossRef
Google Scholar
Roth V, Mow VC. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg Am. 1980;62:1102–17.
CAS
PubMed
CrossRef
Google Scholar
Kempson GE, Spivey CJ, Swanson SA, Freeman MA. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4:597–609.
CAS
PubMed
CrossRef
Google Scholar
Kempson GE, Freeman MA, Swanson SA. Tensile properties of articular cartilage. Nature. 1968;220:1127–8.
CAS
PubMed
CrossRef
Google Scholar
Gottardi R, Hansen U, Raiteri R, Loparic M, Düggelin M, Mathys D, Friederich NF, Bruckner P, Stolz M. Supramolecular organization of collagen fibrils in healthy and osteoarthritic human knee and hip joint cartilage. PLoS One. 2016;11:e0163552.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Han EH, Chen SS, Klisch SM, Sah RL. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage. Biophys J. 2011;101:916–24.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Broom ND. Further insights into the structural principles governing the function of articular cartilage. J Anat. 1984;139(Pt 2):275–94.
PubMed
PubMed Central
Google Scholar
Eleswarapu SV, Responte DJ, Athanasiou KA. Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLoS One. 2011;6:e26178.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21:872–80.
CAS
PubMed
CrossRef
Google Scholar
Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 2006;54:1357–60.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62:2241–56.
CAS
PubMed
CrossRef
Google Scholar
Aigner T, Haag J, Martin J, Buckwalter J. Osteoarthritis: aging of matrix and cells--going for a remedy. Curr Drug Targets. 2007;8:325–31.
CAS
PubMed
CrossRef
Google Scholar
Verzijl N, Bank RA, TeKoppele JM, DeGroot J. AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol. 2003;15:616–22.
PubMed
CrossRef
Google Scholar
Yang L, Carlson SG, McBurney D, Horton WE Jr. Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. J Biol Chem. 2005;280:31156–65.
CAS
PubMed
CrossRef
Google Scholar
Grogan SP, D’Lima DD. Joint aging and chondrocyte cell death. Int J Clin Rheumatol. 2010;5:199–214.
CrossRef
Google Scholar
Minguzzi M, Cetrullo S, D’Adamo S, Silvestri Y, Flamigni F, Borzì RM. Emerging players at the intersection of chondrocyte loss of maturational arrest, oxidative stress, senescence and low-grade inflammation in osteoarthritis. Oxid Med Cell Longev. 2018;2018:3075293. doi: 10.1155/2018/3075293.
Google Scholar
Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229–37.
Google Scholar
Blanco FJ, Guitian R, Vazquez-Martul E, de Toro FJ, Galdo F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 1998;41:284–9.
CAS
PubMed
CrossRef
Google Scholar
Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, McKenna L. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum. 2001;44:1304–12.
CAS
PubMed
CrossRef
Google Scholar
Chang J, Wang W, Zhang H, Hu Y, Wang M, Yin Z. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med. 2013;32:1311–8.
CAS
PubMed
CrossRef
Google Scholar
Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62:791–801.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Carames B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheum. 2015;67:1568–76.
CAS
CrossRef
Google Scholar
Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1–7.
CAS
PubMed
PubMed Central
Google Scholar
Ma CH, Wu CH, Jou IM, Tu YK, Hung CH, et al. PKR promotes oxidative stress and apoptosis of human articular chondrocytes by causing mitochondrial dysfunction through p38 MAPK activation-PKR activation causes apoptosis in human chondrocytes. Antioxidants (Basel). 2019;8(9):E370. doi: 10.3390/antiox8090370.
Google Scholar
Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci. 2001;56A:B172–9.
CAS
CrossRef
Google Scholar
Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3:257–64.
CAS
PubMed
CrossRef
Google Scholar
Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA. Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence. J Gerontol Ser A Biol Sci Med Sci. 2004;59:324–37.
CrossRef
Google Scholar
Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009;17:971–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Harbo M, Delaisse JM, Kjaersgaard-Andersen P, Soerensen FB, Koelvraa S, Bendix L. The relationship between ultra-short telomeres, aging of articular cartilage and the development of human hip osteoarthritis. Mech Ageing Dev. 2013;134:367–72.
CAS
PubMed
CrossRef
Google Scholar
Leong DJ, Sun HB. Events in articular chondrocytes with aging. Curr Osteoporos Rep. 2011;9:196–201.
PubMed
CrossRef
Google Scholar
Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PE, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage. 2005;13:614–22.
CAS
PubMed
CrossRef
Google Scholar
Bates EJ, Harper GS, Lowther DA, Preston BN. Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates. Biochem Int. 1984;8:629–37.
CAS
PubMed
Google Scholar
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med. 2019;132:73–82.
Google Scholar
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Wojtkiewicz J. Articular cartilage aging-potential regenerative capacities of cell manipulation and stem cell therapy. Int J Mol Sci. 2018;19(2):E623.
Google Scholar
Trelstad RL, Kang AH, Igarashi S, Gross J. Isolation of two distinct collagens from chick cartilage. Biochemistry. 1970;9:4993–8.
CAS
PubMed
CrossRef
Google Scholar
Mayne R. Cartilage collagens. What is their function and are they are involved in articular disease? Arthritis Rheum. 1989;32:241–6.
CAS
PubMed
CrossRef
Google Scholar
Benninghof A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Function. II. Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Function. Z Zellforsch Mikrosk Anat. 1925;2:783–862.
CrossRef
Google Scholar
Speer DP, Dahners L. The collagenous architecture of articular cartilage. Clin Orthop Relat Res. 1979;139:267–75.
Google Scholar
Hwang WS, Li B, Jin LH, Ngo K, Schachar NS, Hughes GNF. Collagen fibril structure of normal aging, and osteoarthritic cartilage. J Pathol. 1992;167:425–33.
CAS
PubMed
CrossRef
Google Scholar
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51:241–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rieppo L, Saarakkala S, Narhi T, Holopainen J, Lammi M, Helminen HJ, Jurvelin JS, Rieppo J. Quantitative analysis of spatial proteoglycan content in articular cartilage with Fourier transform infrared imaging spectroscopy: critical evaluation of analysis methods and specificity of the parameters. Microsc Res Tech. 2010;73:503–12.
CAS
PubMed
Google Scholar
Yin J, Xia Y, Lu M. Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression. Spectrochim Acta Mol Biomol Spectrosc. 2012;88:90–6.
Google Scholar
Paul PK, O’Byrne E, Blancuzzi V, Wilson D, Gunson D, Douglas FL, Wang JZ, Mezrich RS. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee. Skelet Radiol. 1991;20:31–6.
CAS
CrossRef
Google Scholar
Wang Q, Zheng YP, Niu HJ. Changes in triphasic mechanical properties of proteoglycan-depleted articular cartilage extracted from osmotic swelling behavior monitored using high-frequency ultrasound. Mol Cell Biomech. 2010;7:45–58.
CAS
PubMed
Google Scholar
Inerot S, Heinegard D, Audell L, Olsson SE. Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J. 1978;169:143–56.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lauder RM, Huckerby TN, Nieduszynski IA, Plaas AH. Age-related changes in the structure of the keratan sulphate chains attached to fibromodulin isolated from articular cartilage. Biochem J. 1998;330(Pt 2):753–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Theocharis DA, Kalpaxis DL, Tsiganos CP. Cartilage keratan sulphate: changes in chain length with ageing. Biochim Biophys Acta. 1985;841:131–4.
CAS
PubMed
CrossRef
Google Scholar
Hopwood JJ, Robinson HC. The structure and composition of cartilage keratan sulphate. Biochem J. 1974;141:517–26.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Thambyah A, Zhao JY, Bevill SL, Broom ND. Macro-, micro- and ultrastructural investigation of how degeneration influences the response of cartilage to loading. J Mech Behav Biomed Mater. 2012;5:206–15.
CAS
PubMed
CrossRef
Google Scholar
Kwiecinski JJ, Dorosz SG, Ludwig TE, Abubacker S, Cowman MK, Schmidt TA. The effect of molecular weight on hyaluronan’s cartilage boundary lubricating ability – alone and in combination with proteoglycan 4. Osteoarthritis Cartilage. 2011;19:1356–62.
Google Scholar
Abubacker S, Ham HO, Messersmith PB, Schmidt TA. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage. 2013;21:186–9.
CAS
PubMed
CrossRef
Google Scholar
Oloyede A, Gudimetla P, Chen Y, Crawford R. In vitro reversal of the load-bearing properties of lipid-depleted articular cartilage following exposure to phospholipid surfactant solutions. Clin Biomech (Bristol, Avon). 2008;23:1200–8.
CAS
CrossRef
Google Scholar
Chang DP, Guilak F, Jay GD, Zauscher S. Interaction of lubricin with type II collagen surfaces: adsorption, friction, and normal forces. J Biomech. 2014;47:659–66.
PubMed
CrossRef
Google Scholar
Ghadially FN, Meachim G, Collins DH. Extra-cellular lipid in the matrix of human articular cartilage. Ann Rheum Dis. 1965;24:136–46.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Stockwell RA. Lipid in the matrix of ageing articular cartilage. Nature. 1965;207:427–8.
CAS
PubMed
CrossRef
Google Scholar
Rabinowitz JL, Gregg JR, Nixon JE, Schumacher HR. Lipid composition of the tissues of human knee joints. I. Observations in normal joints (articular cartilage, meniscus, ligaments, synovial fluid, synovium, intra-articular fat pad and bone marrow). Clin Orthop Relat Res. 1979;(143):260–5.
Google Scholar
Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 2007;56:882–91.
CAS
PubMed
CrossRef
Google Scholar
Sivan S, Schroeder A, Verberne G, Merkher Y, Diminsky D, Priev A, Maroudas A, Halperin G, Nitzan D, Etsion I, Barenholz Y. Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir. 2010;26:1107–16.
CAS
PubMed
CrossRef
Google Scholar
Mitrovic DR, Uzan M, Quintero M, Ryckewaert A. Lipid peroxides in human articular cartilage. Rheumatol Int. 1984;5:33–7.
CAS
PubMed
CrossRef
Google Scholar
Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000;275:20069–76.
CAS
PubMed
CrossRef
Google Scholar
Van Der Korst JK, Sokoloff L, Miller EJ. Senescent pigmentation of cartilage and degenerative joint disease. Arch Pathol. 1968;86:40–7.
PubMed
Google Scholar
Tsukahara Y, Nasu T. Ceroid-like pigment in age changes of human cartilage. Acta Pathol Jpn. 1974;24:357–69.
CAS
PubMed
Google Scholar
Van Der Korst JK, Willekens FL, Lansink AG, Henrichs AM. Age-associated glycopeptide pigment in human costal cartilage. Am J Pathol. 1977;89:605–19.
PubMed
PubMed Central
Google Scholar
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Aging and osteoarthritis: central role of the extracellular matrix. Ageing Res Rev. 2017;40:20–30.
CAS
PubMed
CrossRef
Google Scholar
De Campos VB, Vilarta R. Articular cartilage: collagen II-proteoglycans interactions. Availability of reactive groups. Variation in birefringence and differences as compared to collagen I. Acta Histochem. 1988;83:189–205.
CAS
CrossRef
Google Scholar
Panula HE, Hyttinen MM, Arokoski JPA, Langsjo TK, Pelttari A, Kiviranta I, Helminen HJ. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann Rheum Dis. 1998;57:237–45.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, Bayliss MT, Bijlsma JW, Lafeber FP, Tekoppele JM. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J. 2000;350(Pt 2):381–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Monnier VM. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol. 1990;45:B105–11.
CAS
PubMed
CrossRef
Google Scholar
Graham L. A comprehensive survey of the acid-stable fluorescent cross-links formed by ribose with basic amino acids, and partial characterization of a novel Maillard cross-link. Biochim Biophys Acta. 1996;1297:9–16.
PubMed
CrossRef
Google Scholar
Pokharna HK, Pottenger LA. Nonenzymatic glycation of cartilage proteoglycans: an in vivo and in vitro study. Glycoconj J. 1997;14:917–23.
CAS
PubMed
CrossRef
Google Scholar
Uchiyama A, Ohishi T, Takahashi M, Kushida K, Inoue T, Fujie M, Horiuchi K. Fluorophores from aging human articular cartilage. J Biochem. 1991;110:714–8.
CAS
PubMed
CrossRef
Google Scholar
Sell DR, Monnier VM. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990;85:380–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J. 1998;330(Pt 1):345–51.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mow VC. In: Mow VC, Hayes WC, editors. Basic orthopedic biomechanics. 2nd ed. Philadelphia: Lippincott - Raven Press; 1997. p. 113–514.
Google Scholar
Chen AC, Temple MM, Ng DM, Verzijl N, DeGroot J, TeKoppele JM, Sah RL. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum. 2002;46:3212–7.
CAS
PubMed
CrossRef
Google Scholar
Fick JM, Huttu MR, Lammi MJ, Korhonen RK. In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner. Osteoarthritis Cartilage. 2014;22:1410–8.
CAS
PubMed
CrossRef
Google Scholar
DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, Tekoppele JM. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum. 1999;42:1003–9.
CAS
PubMed
CrossRef
Google Scholar
Hirose J, Yamabe S, Takada K, Okamoto N, Nagai R, Mizuta H. Immunohistochemical distribution of advanced glycation end products (AGEs) in human osteoarthritic cartilage. Acta Histochem. 2011;113:613–8.
CAS
PubMed
CrossRef
Google Scholar
Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One. 2014;9:e86903.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Dejica VM, Mort JS, Laverty S, Antoniou J, Zukor DJ, Tanzer M, Poole AR. Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res Ther. 2012;14:R113.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Silver FH, Glasgold AI. Cartilage wound healing. An overview. Otolaryngol Clin N Am. 1995;28(5):847–64.
CAS
Google Scholar
Gomoll AH, Minas T. The quality of healing: articular cartilage. Wound Repair Regen. 2014;22(Suppl 1):30–8.
PubMed
CrossRef
Google Scholar
Grynpas MD, Eyre DR, Kirschner DA. Collagen type II differs from type I in native molecular packing. Biochim Biophys Acta. 1980;626:346–55.
CAS
PubMed
CrossRef
Google Scholar
Chaminade F, Stanescu V, Stanescu R, Maroteaux P, Peyron JG. Noncollagenous proteins in cartilage of normal subjects and patients with degenerative joint disease. A gel electrophoretic study. Arthritis Rheum. 1982;25:1078–83.
CAS
PubMed
CrossRef
Google Scholar
Roughley PJ. Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res. 2001;3:342–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Eisenstein R, Kuettner KE, Neapolitan C, Soble LW, Sorgente N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Pathol. 1975;81:337–48.
CAS
PubMed
PubMed Central
Google Scholar
Stanescu V, Do TP, Chaminade F, Maroteaux P, Stanescu R. Non-collagenous protein screening in the human chondrodysplasias: link proteins, cartilage oligomeric matrix protein (COMP), and fibromodulin. Am J Med Genet. 1994;51:22–8.
CAS
PubMed
CrossRef
Google Scholar
Neame PJ, Tapp H, Azizan A. Noncollagenous, nonproteoglycan macromolecules of cartilage. Cell Mol Life Sci. 1999;55:1327–40.
CAS
PubMed
CrossRef
Google Scholar
Bywaters EG, Dorling J. Amyloid deposits in articular cartilage. Ann Rheum Dis. 1970;29:294–306.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mohr W, Kuhn C, Linke RP, Wessinghage D. Deposition of amyloid of unknown origin in articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;60(4):259–62.
Google Scholar
Athanasou NA, West L, Sallie B, Puddle B. Localized amyloid deposition in cartilage is glycosaminoglycans-associated. Histopathology. 1995;26:267–72.
CAS
PubMed
CrossRef
Google Scholar
Ladefoged C. Amyloid in osteoarthritic hip joints. A pathoanatomical and histological investigation of femoral head cartilage. Acta Orthop Scand. 1982;53:581–6.
CAS
PubMed
CrossRef
Google Scholar
Ladefoged C, Christensen HE, Sorensen KH. Amyloid in osteoarthritic hip joints. Depositions in cartilage and capsule. Semiquantitative aspects. Acta Orthop Scand. 1982;53:587–90.
CAS
PubMed
CrossRef
Google Scholar
Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD. A primer of amyloid nomenclature. Amyloid. 2007;14:179–83.
CAS
PubMed
CrossRef
Google Scholar
Maroudas AI. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature. 1976;260:808–9.
CAS
PubMed
CrossRef
Google Scholar
Stockwell RA, Barnett CH. Changes in permeability of articular cartilage with age. Nature. 1964;201:835–6.
CAS
PubMed
CrossRef
Google Scholar
Kyriazis AP, Tsaltas TT. Studies in permeability of articular cartilage in New Zealand albino rabbits. The effect of aging, papain, and certain steroid hormones. Am J Pathol. 1971;62:75–85.
CAS
PubMed
PubMed Central
Google Scholar
Duan W, Wei L, Zhang J, Hao Y, Li C, Li H, Li Q, Zhang Q, Chen W, Wei X. Alteration of viscoelastic properties is associated with a change in cytoskeleton components of ageing chondrocytes from rabbit knee articular cartilage. Mol Cell Biomech. 2011;8:253–74.
PubMed
Google Scholar
Steklov N, Srivastava A, Sung KL, Chen PC, Lotz MK, D’Lima DD. Aging-related differences in chondrocyte viscoelastic properties. Mol Cell Biomech. 2009;6:113–9.
PubMed
Google Scholar
Szarko M, Xia Y. Direct visualisation of the depth dependent mechanical properties of full-thickness articular cartilage. Open J Orthop. 2012; doi. 10.4236/ojo.2012.22007.
Google Scholar
Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol. 2013;305:C1202–8.
CAS
PubMed
CrossRef
Google Scholar
Peters AE, Akhtar R, Comerford EJ, Bates KT. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci Rep. 2018;8(1):5931.
Google Scholar
Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.
CAS
PubMed
CrossRef
Google Scholar
Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep. 2013;15:375.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Loeser RF, Gandhi U, Long DL, Yin W, Chubinskaya S. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor-1 and osteogenic protein-1. Arthritis Rheum. 2014;66:2201–9.
CAS
CrossRef
Google Scholar
van Caam A, Madej W, Thijssen E, Garcia de Vinuesa A, van den Berg W, Goumans MJ, Ten Dijke P, Blaney Davidson E, van der Kraan PM. Expression of TGFβ-family signalling components in ageing cartilage: age-related loss of TGFβ and BMP receptors. Osteoarthritis Cartilage. 2016;24:1235–45.
Google Scholar
Shimada H, Sakakima H, Tsuchimochi K, Matsuda F, Komiya S, Goldring MB, Ijiri K. Senescence of chondrocytes in aging articular cartilage: GADD45β mediates p21 expression in association with C/EBPβ in senescence-accelerated mice. Pathol Res Pract. 2011;207:225–31.
Google Scholar
Matsuzaki T, Alvarez-Garcia O, Mokuda S, Nagira K, Olmer M, Gamini R, Miyata K, Akasaki Y, Su AI, Asahara H, Lotz MK. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med. 2018;10(428):pii eaan0746. doi 10. 1126/scitranslmed,aan0746.
Google Scholar
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheum. 2014;66(12):3349–58.
CAS
CrossRef
Google Scholar
Akasaki Y, Hasegawa A, Saito M, Asahara H, Iwamoto Y, Lotz MK, Dysregulated FOXO. Transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage. 2014;22:162–70.
CAS
PubMed
CrossRef
Google Scholar
Breu A, Sprinzing B, Merkl K, Bechmann V, Kujat R, Jenei-Lanzl Z, Prantl L, Angele P. Estrogen reduces cellular aging in human mesenchymal stem cells and chondrocytes. J Orthop Res. 2011;29:1563–71.
CAS
PubMed
CrossRef
Google Scholar
Yudoh K, Karasawa R. Statin prevents chondrocyte aging and degeneration of articular cartilage in osteoarthritis (OA). Aging (Albany NY). 2010;2:990–8.
CAS
CrossRef
Google Scholar
Henrotin Y, Deby-Dupont G, Deby C, Franchimont P, Emerit I. Active oxygen species, articular inflammation and cartilage damage. EXS. 1992;62:308–22.
CAS
PubMed
Google Scholar
Schiller J, Fuchs B, Arnhold J, Arnold K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr Med Chem. 2003;10:2123–45.
CAS
PubMed
CrossRef
Google Scholar
Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. 2003;11:747–55.
CAS
PubMed
CrossRef
Google Scholar
Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol. 2007;34:556–62.
CAS
PubMed
Google Scholar
Anderson DD, Brown TD, Radin EL. The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission. Clin Orthop Relat Res. 1993;(268):298–307.
Google Scholar
Kelly PA, O’Connor JJ. Transmission of rapidly applied loads through articular cartilage. Part 1: uncracked cartilage. Proc Insts Mech Eng H. 1996;210:27–37.
CAS
CrossRef
Google Scholar
Kelly PA, O’Connor JJ. Transmission of rapidly applied loads through articular cartilage. Part 2: cracked cartilage. Proc Insts Mech Eng H. 1996;210:39–49.
CAS
CrossRef
Google Scholar
Nguyen Q, Murphy G, Hughes CE, Mort JS, Roughley PJ. Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem J. 1993;295(Pt 2):595–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roughley PJ, Nguyen Q, Mort JS, Hughes CE, Caterson B. Proteolytic degradation in human articular cartilage: its relationship to stromelysin. Agents Actions Suppl. 1993;39:149–59.
CAS
PubMed
Google Scholar
Aquaron R. Alkaptonuria: a very rare metabolic disorder. Indian J Biochem Biophys. 2013;50:339–44.
CAS
PubMed
Google Scholar
Grosicka A, Kucharz EJ. Alkaptonuria. Wiad Lek. 2009;62:197–203.
PubMed
Google Scholar
Introne WJ, Gahl WA. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Fong CT, Mefford HC, RJH S, Stephens K, editors. Alkaptonuria. Seattle (WA): University of Washington, Seattle; 1993.
Google Scholar
Pritzker K. Articular pathology of gout, calcium pyrophosphate dihydrate, and basic calcium phosphate crystal deposition arthropathies. In: Terkeltaub R, editor. Gout and other crystal arthropathies. Philadelphia: Elsevier, Saunders; 2012. p. 1–19.
Google Scholar
Pritzker KP. Calcium pyrophosphate crystal arthropathy: a biomineralization disorder. Hum Pathol. 1986;17:543–5.
CAS
PubMed
CrossRef
Google Scholar
Ryan LM. Calcium pyrophosphate dihydrate crystal deposition and other crystal deposition diseases. Curr Opin Rheumatol. 1993;5:517–21.
CAS
PubMed
CrossRef
Google Scholar
Pritzker KP. Crystal deposition in joints: prevalence and relevance for arthritis. J Rheumatol. 2008;35:958–9.
PubMed
CrossRef
Google Scholar
Rosenthal AK, McCarty BA, Cheung HS, Ryan LM. A comparison of the effect of transforming growth factor beta 1 on pyrophosphate elaboration from various articular tissues. Arthritis Rheum. 1993;36:539–42.
CAS
PubMed
CrossRef
Google Scholar
Pritzker KPH, Luk SC. Apatite associated arthropathies: preliminary ultrastructural studies. Scan Electron Microsc. 1976;493–500.
Google Scholar
Molloy ES, McCarthy GM. Hydroxyapatite deposition disease of the joint. Curr Rheumatol Rep. 2003;5:215–21.
PubMed
CrossRef
Google Scholar
Hogan DB, Pritzker KP. Synovial fluid analysis – another look at the mucin clot test. J Rheumatol. 1985;12:242–4.
CAS
PubMed
Google Scholar
Shinozaki T, Xu Y, Cruz TF, Pritzker KPH. Calcium pyrophosphate dihydrate (CPPD) crystal dissolution by alkaline phosphatase: interaction of alkaline phosphatase on CPPD crystals. J Rheumatol. 1995;22:117–23.
CAS
PubMed
Google Scholar
So PP, Tsui FW, Vieth R, Tupy JH, Pritzker KP. Inhibition of alkaline phosphatase by cysteine: implications for calcium pyrophosphate dihydrate crystal deposition disease. J Rheumatol. 2007;34:1313–22.
CAS
PubMed
Google Scholar
Kannampuzha JV, Tupy JH, Pritzker KP. Mercaptopyruvate inhibits tissue-nonspecific alkaline phosphatase and calcium pyrophosphate dihydrate crystal dissolution. J Rheumatol. 2009;36:2758–65.
CAS
PubMed
CrossRef
Google Scholar
Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising? Results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 2010;62:1576–82.
PubMed
PubMed Central
CrossRef
Google Scholar
Conigliaro P, Chimenti MS, Triggianese P, Sunzini F, Novelli L, Perricone C, Perricone R. Autoantibodies in inflammatory arthritis. Autoimmun Rev. 2016;15:673–83.
CAS
PubMed
CrossRef
Google Scholar
Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990;322:1277–89.
PubMed
CrossRef
Google Scholar
Zhou RP, Dai BB, Xie YY, Wu XS, Wang ZS, Li Y, Wang ZQ, Zu SQ, Ge JF, Chen FH. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim Biophys Acta. 2018;1864(1):162–77.
CAS
CrossRef
Google Scholar
Abramson SB, Amin A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford). 2002;41(9):972–80.
CAS
CrossRef
Google Scholar
Malemud CJ. Matrix metalloproteinases and synovial joint pathology. Prog Mol Biol Transl Sci. 2017;148:305–25.
PubMed
CrossRef
Google Scholar
Caglič D, Repnik U, Jedeszko C, Kosec G, Miniejew C, Kindermann M, Vasiljeva O, Turk V, Wendt KU, Sloane BF, Goldring MB, Turk B. The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biol Chem. 2013;394(2):307–16.
PubMed
CrossRef
CAS
Google Scholar
Hollander AP, Atkinst RM, Eastwoodt DM, et al. Human cartilage is degraded by rheumatoid arthritis synovial fluid but not by recombinant cytokines in vitro. Clin Exp Immunol. 1991;83:52–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ostrowska M, Maśliński W, Prochorec-Sobieszek M, Nieciecki M, Sudoł-Szopińska I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia. 2018;56(2):111–20.
PubMed
PubMed Central
CrossRef
Google Scholar
Sudoł-Szopińska I, Kontny E, Zaniewicz-Kaniewska K, et al. Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue. J Ultrason. 2013;13:192–201.
PubMed
PubMed Central
CrossRef
Google Scholar
Sudoł-Szopińska I, Kontny E, Maśliński W, et al. The pathogenesis of rheumatoid arthritis in radiological studies. Part I: formation of inflammatory infiltrates within the synovial membrane. J Ultrason. 2012;12:202–13.
PubMed
PubMed Central
CrossRef
Google Scholar
Kontny E, Plebanczyk M, Lisowska B, Olszewska M, Maldyk P, Maslinski W. Comparison of rheumatoid articular adipose and synovial tissue reactivity to proinflammatory stimuli: contribution to adipocytokine network. Ann Rheum Dis. 2012;71(2):262–7.
CAS
PubMed
CrossRef
Google Scholar
Pritzker KHP. Pathology of osteoarthritis. In: Brandt KD, Doherty M, Lohmander LS, Edition 2nd, editors. Osteoarthritis. Oxford: Oxford University Press; 2003. p. 49–58.
Google Scholar
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.
CAS
PubMed
Google Scholar
Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.
PubMed
Google Scholar
Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41:778–99.
CAS
PubMed
CrossRef
Google Scholar
Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229–37.
PubMed
PubMed Central
CrossRef
Google Scholar
Bierma-Zeinstra SM, van Middelkoop M. Osteoarthritis: in search of phenotypes. Nat Rev Rheumatol. 2017;13:705–6.
Google Scholar
Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage. 2017;25(12):1926–41.
Google Scholar
Budd E, Nalesso G, Mobasheri A. Extracellular genomic biomarkers of osteoarthritis. Expert Rev Mol Diagn. 2018:18(1):55–74.
Google Scholar
Nuki G. Osteoarthritis: a problem of joint failure. Z Rheumatol. 1999;58(3):142–7.
Google Scholar
Varady NH, Grodzinsky AJ. Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage. 2016;24:27–35.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Christensen R, Henriksen M, Leeds AR, Gudbergsen H, Christensen P, Sorensen TJ, Bartels EM, Riecke BF, Aaboe J, Frederiksen R, Boesen M, Lohmander LS, Astrup A, Bliddal H. Effect of weight maintenance on symptoms of knee osteoarthritis in obese patients: a twelve-month randomized controlled trial. Arthritis Care Res. 2015;67:640–50.
CrossRef
Google Scholar
Lee R, Kean WF. Obesity and knee osteoarthritis. Inflammopharmacology. 2012;20:53–8.
PubMed
CrossRef
Google Scholar
Jiménez G, Cobo-Molinos J, Antich C, López-Ruiz E. Osteoarthritis: Trauma vs Disease. Adv Exp Med Biol. 2018;1059:63–83.
PubMed
CrossRef
CAS
Google Scholar
Andriacchi TP, Favre J. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr Rheumatol Rep. 2014;16:463.
PubMed
CrossRef
Google Scholar
Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14:13–29.
CAS
PubMed
CrossRef
Google Scholar
Setton LA, Mow VC, Muller FJ, Pita JC, Howell DS. Altered structure-function relationships for articular cartilage in human osteoarthritis and an experimental canine model. Agents Actions Suppl. 1993;39:27–48.
CAS
PubMed
CrossRef
Google Scholar
Lohmander LS, Felson DT. Defining the role of molecular markers to monitor disease, intervention, and cartilage breakdown in osteoarthritis. J Rheumatol. 1997;24:782–5.
CAS
PubMed
Google Scholar
Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29:1039–49.
CAS
PubMed
CrossRef
Google Scholar
Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37:324–32.
PubMed
CrossRef
Google Scholar
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the inflammation-autophagy-senescence integrative network in osteoarthritis. Front Physiol. 2018;9:706.
Google Scholar
Dieppe PA. Recommended methodology for assessing the progression of osteoarthritis of the hip and knee joints. Osteoarthritis Cartilage. 1995;3:73–7.
CAS
PubMed
CrossRef
Google Scholar
Mankin HJ, Thrasher AZ. Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am. 1975;57:76–80.
CAS
PubMed
CrossRef
Google Scholar
Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36:121–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maroudas A, Ziv I, Weisman N, Venn M. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology. 1985;22:159–69.
CAS
PubMed
CrossRef
Google Scholar
Lothe K, Spycher MA, Ruttner JR. Focal lacunar resorption in the articular cartilage of femoral heads. J Bone Joint Surg. 1985;67:543–7.
CAS
CrossRef
Google Scholar
Hashimoto S, Ochs RL, Komiya S, Lotz M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 1998;41:1632–8.
CAS
PubMed
CrossRef
Google Scholar
Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53:523–37.
CAS
PubMed
CrossRef
Google Scholar
Mankin HJ, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg Am. 1970;52:424–34.
CAS
PubMed
CrossRef
Google Scholar
Lee GM, Paul TA, Slabaugh M, Kelley SS. The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density. Osteoarthritis Cartilage. 2000;8:44–52.
CAS
PubMed
CrossRef
Google Scholar
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D. Cartilage cell clusters. Arthritis Rheum. 2010;62:2206–18.
PubMed
PubMed Central
CrossRef
Google Scholar
Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.
CAS
PubMed
CrossRef
Google Scholar
Sanchez C, Lambert C, Dubuc JE, Bertrand J, Pap T, et al. Syndecan-4 is increased in osteoarthritic knee, but not hip or shoulder, articular hypertrophic chondrocytes. Cartilage. 2019:1947603519870855. doi: 10.1177/1947603519870855. [Epub ahead of print]
Google Scholar
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci. 2019;1442(1):17–34.
Google Scholar
Gratal P, Mediero A, Sánchez-Pernaute O, Prieto-Potin I, Lamuedra A, et al. Chondrocyte enlargement is a marker of osteoarthritis severity. Osteoarthritis Cartilage. 2019;27(8):1229–34.
Google Scholar
Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999;7:2–14.
CAS
PubMed
CrossRef
Google Scholar
Maroudas A, Evans H, Almeida L. Cartilage of the hip joint. Topographical variation of glycosaminoglycan content in normal and fibrillated tissue. Ann Rheum Dis. 1973;32:1–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cs-Szabo G, Melching LI, Roughley PJ, Glant TT. Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. Arthritis Rheum. 1997;40:1037–45.
CAS
PubMed
CrossRef
Google Scholar
Barreto G, Soininen A, Ylinen P, Sandelin J, Konttinen YT, Nordstrom DC, Eklund KK. Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res Ther. 2015;17:379.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mort JS, Geng Y, Fisher WD, Roughley PJ. Aggrecan heterogeneity in articular cartilage from patients with osteoarthritis. BMC Musculoskelet Disord. 2016;17:89.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mollenhauer J, Mok MT, King KB, Gupta M, Chubinskaya S, Koepp H, Cole AA. Expression of anchorin CII (cartilage annexin V) in human young, normal adult, and osteoarthritic cartilage. J Histochem Cytochem. 1999;47:209–20.
CAS
PubMed
CrossRef
Google Scholar
Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W. Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 1994;37:1013–22.
CAS
PubMed
CrossRef
Google Scholar
Salter DM. Tenascin is increased in cartilage and synovium from arthritic knees. Br J Rheumatol. 1993;32:780–6.
CAS
PubMed
CrossRef
Google Scholar
Chen JR, Takahashi M, Suzuki M, Kushida K, Miyamoto S, Inoue T. Pentosidine in synovial fluid in osteoarthritis and rheumatoid arthritis: relationship with disease activity in rheumatoid arthritis. J Rheumatol. 1998;25:2440–4.
CAS
PubMed
Google Scholar
Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64:886–90.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Willett TL, Kandel R, De Croos JN, Avery NC, Grynpas MD. Enhanced levels of non-enzymatic glycation and pentosidine crosslinking in spontaneous osteoarthritis progression. Osteoarthritis Cartilage. 2012;20:736–44.
CAS
PubMed
CrossRef
Google Scholar
Lane JM, Weiss C. Review of articular cartilage collagen research. Arthritis Rheum. 1975;18:553–62.
CAS
PubMed
CrossRef
Google Scholar
Pullig O, Weseloh G, Swoboda B. Expression of type VI collagen in normal and osteoarthritic human cartilage. Osteoarthritis Cartilage. 1999;7:191–202.
CAS
PubMed
CrossRef
Google Scholar
Girkontaite I, Frischholz S, Lammi P, Wagner K, Swoboda B, Aigner T. Von der Mark K. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol. 1996;15:231–8.
CAS
PubMed
CrossRef
Google Scholar
Aigner T, Bertling W, Stoss H, Weseloh G, von der Mark K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest. 1993;91:829–37.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(4):205–11.
Google Scholar
Weiss C. Ultrastructural characteristics of osteoarthritis. Fed Proc. 1973;32(4):1459–66.
Google Scholar
Studer D, Chiquet M, Hunziker EB. Evidence for a distinct water-rich layer surrounding collagen fibrils in articular cartilage extracellular matrix. J Struct Biol. 1996;117:81–5.
CAS
PubMed
CrossRef
Google Scholar
Homandberg GA, Wen C, Hui F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage. 1998;6:231–44.
CAS
PubMed
CrossRef
Google Scholar
Jones KL, Brown M, Ali SY, Brown RA. An immunohistochemical study of fibronectin in human osteoarthritic and disease free articular cartilage. Ann Rheum Dis. 1987;46:809–15.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chevalier X. Fibronectin, cartilage, and osteoarthritis. Semin Arthritis Rheum. 1993;22:307–18.
CAS
PubMed
CrossRef
Google Scholar
Swoboda B, Pullig O, Kladny B, Pfander D, Weseloh G. Collagen type VI content in healthy and arthritis knee joint cartilage. Zeitschrift fur Orthopadie und ihre Grenzgeb. 1999;137:540–4.
CAS
CrossRef
Google Scholar
von der Mark K, Frischholz S, Aigner T, Beier F, Belke J, Erdmann S, Burkhardt H. Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl. 1995;266:125–9.
PubMed
CrossRef
Google Scholar
Khoshgoftar M, Torzilli PA, Maher SA. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res. 2018;36(2):721–29.
Google Scholar
Henao-Murillo L, Ito K, van Donkelaar CC. Collagen damage location in articular cartilage differs if damage is caused by excessive loading magnitude or rate. Ann Biomed Eng. 2018;46(4):605–15.
PubMed
PubMed Central
CrossRef
Google Scholar
Imhof H, Breitenseher M, Kainberger F, Trattnig S. Degenerative joint disease: cartilage or vascular disease? Skelet Radiol. 1997;26:398–403.
CAS
CrossRef
Google Scholar
Trickey WR, Lee GM, Guilak F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res. 2000;18:891–8.
CAS
PubMed
CrossRef
Google Scholar
Trickey WR, Vail TP, Guilak F. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res. 2004;22:131–9.
PubMed
CrossRef
Google Scholar
Lai Y, Yu XP, Zhang Y, Tian Q, Song H, Mucignat MT, Perris R, Samuels J, Krasnokutsky S, Attur M, Greenberg JD, Abramson SB, Di Cesare PE, Liu CJ. Enhanced COMP catabolism detected in serum of patients with arthritis and animal disease models through a novel capture ELISA. Osteoarthritis Cartilage. 2012;20:854–62.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Verma P, Dalal K. Serum cartilage oligomeric matrix protein (COMP) in knee osteoarthritis: a novel diagnostic and prognostic biomarker. J Orthop Res. 2013;31:999–1006.
CAS
PubMed
CrossRef
Google Scholar
Song SY, Han YD, Hong SY, Kim K, Yang SS, Min BH, Yoon HC. Chip-based cartilage oligomeric matrix protein detection in serum and synovial fluid for osteoarthritis diagnosis. Anal Biochem. 2012;420:139–46.
CAS
PubMed
CrossRef
Google Scholar
El-Arman MM, El-Fayoumi G, El-Shal E, El-Boghdady I, El-Ghaweet A. Aggrecan and cartilage oligomeric matrix protein in serum and synovial fluid of patients with knee osteoarthritis. HSS J. 2010;6(2):171–6.
Google Scholar
Clark AG, Jordan JM, Vilim V, Renner JB, Dragomir AD, Luta G, Kraus VB. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum. 1999;42:2356–64.
CAS
PubMed
CrossRef
Google Scholar
Hosnijeh FS, Runhaar J, van Meurs JB, Bierma-Zeinstra SM. Biomarkers for osteoarthritis: can they be used for risk assessment? A systematic review. Maturitas. 2015;82:36–49.
PubMed
CrossRef
CAS
Google Scholar
Neidhart M, Hauser N, Paulsson M, DiCesare PE, Michel BA, Hauselmann HJ. Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol. 1997;36:1151–60.
CAS
PubMed
CrossRef
Google Scholar
Chateauvert JMD, Grynpas MD, Kessler MJ, Pritzker KPH. Spontaneous osteoarthritis in rhesus macaques. II. Characterization of disease and morphometric studies. J Rheumatol. 1990;17:73–83.
CAS
PubMed
Google Scholar
Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman BN, Aliabadi P, Levy D. The incidence and natural history of knee osteoarthritis in the elderly. Arthritis Rheum. 1995;38:1500–5.
CAS
PubMed
CrossRef
Google Scholar
Veronese N, Maggi S, Trevisan C, Noale M, De Rui M, Bolzetta F, Zambon S, Musacchio E, Sartori L, Perissinotto E, Stubbs B, Crepaldi G, Manzato E, Sergi G. Pain increases the risk of developing frailty in older adults with osteoarthritis. Pain Med. 2017;18:414–27.
PubMed
Google Scholar
Loeser RF. The effects of aging on the development of osteoarthritis. HSS J. 2012;8:18–9.
Google Scholar
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, et al. Cartilage regeneration and ageing: targeting cellular plasticity in osteoarthritis. Ageing Res Rev. 2018;42:56–71.
Google Scholar
Sokoloff L. Osteoarthritis and aging. In: Sokoloff L, editor. Biology of degenerative joint disease. Chicago: University of Chicago Press, Chicago; 1969. p. 24–7.
Google Scholar
Mitrovic D, Quintero M, Stankovic A, Ryckewaert A. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Investig. 1983;49:309–16.
CAS
PubMed
Google Scholar
Lane LB, Villacin A, Bullough PG. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br. 1977;59:272–8.
CAS
PubMed
CrossRef
Google Scholar
Venn MF. Variation of chemical composition with age in human femoral head cartilage. Ann Rheum Dis. 1978;37:168–74.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar