Skip to main content

Delivery Systems for Introduction of Natural Antimicrobials into Foods

  • Chapter
  • First Online:
Microbial Control and Food Preservation

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

Antimicrobials are to a large extent less active in complex food matrices compared to their activity in model microbiological systems. Minimum inhibitory concentration (MIC), i.e. the minimum concentration required to inhibit microbial growth for a specific time period, generally increases when the antimicrobial is tested in a select food system. The increases in MIC depend on the nature of the antimicrobial, composition and structure of the food system. Several factors governing this limitation should be carefully considered when designing and selecting a suitable delivery system for antimicrobials. A delivery system is able to protect food antimicrobials from interfering food components and improves delivery of the food antimicrobials to the site where they can be active. Attributes of efficient delivery systems or carriers include Generally regarded as safe (GRAS) status, biocompatible with no side-effects, inexpensive and stability during processing and storage. Furthermore, delivery system should be able to (1) preserve the functionality of the embedded compounds until the time of delivery, and (2) deliver the preserved form effectively at the target site with predictable release profiles. Delivery systems can be made up of naturally occurring polymers and polysaccharides, synthetic polymer or nanomaterials to tailor encapsulation and delivery of antimicrobials (Janaswamy et al., Carbohydr Polym 94:209–215, 2013; Janaswamy and Youngren, Food Funct 3:503–507, 2012; McClements et al., Crit Rev Food Sci Nutr 49:577–606, 2009). These delivery systems present exciting opportunity for food technologists to enhance bioavailability, stability, sustained activity and shelf-life of food through encapsulation and controlled release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balcão VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA (2013) Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll 32:425–431

    Article  Google Scholar 

  • Benech R-O, Kheadr E, Lacroix C, Fliss I (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619

    Article  CAS  Google Scholar 

  • Bhargava K, Conti DS, da Rocha SR, Zhang Y (2015) Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 47:69–73

    Article  CAS  Google Scholar 

  • Blanco-Padilla A, Soto KM, Hernández Iturriaga M, Mendoza S (2014) Food antimicrobials nanocarriers. Sci World J

    Google Scholar 

  • Bouwstra J, Meuswissen M, Mugin L, van der Giessen Y, Junginger H (1996) Transport of model drugs across the skin applied in vesicles in-vitro and in-vivo. Eur J Pharm Sci 4:S42

    Article  Google Scholar 

  • Burguera JL, Burguera M (2012) Analytical applications of emulsions and microemulsions. Talanta 96:11–20

    Article  CAS  Google Scholar 

  • Degnan A, Luchansky J (1992) Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. J Food Prot 55:552–554

    Article  CAS  Google Scholar 

  • Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol 44:1908–1914

    Article  Google Scholar 

  • Donsì F, Annunziata M, Vincensi M, Ferrari G (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350

    Article  Google Scholar 

  • Donsì F, Sessa M, Mediouni H, Mgaidi A, Ferrari G (2011) Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci 1:1666–1671

    Article  Google Scholar 

  • Fathi M, Mozafari M, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  • Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  • Friberg, S., K. Larsson, and J. Sjoblom (2003) Food emulsions. 4th Ed. CRC Press, p 5–20

    Google Scholar 

  • Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocoll 36:204–211

    Article  CAS  Google Scholar 

  • Garti N, Benichou A (2004) Recent developments in double emulsions for food applications. Food Emul:353–412

    Google Scholar 

  • Gaysinsky S, Davidson PM, McClements DJ, Weiss J (2008) Formulation and characterization of phytophenol-carrying antimicrobial microemulsions. Food Biophys 3:54–65

    Article  Google Scholar 

  • Ghosh V, Mukherjee A, Chandrasekaran N (2013) Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 20:338–344

    Article  CAS  Google Scholar 

  • Ghosh V, Mukherjee A, Chandrasekaran N (2014) Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B: Biointerfaces 114:392–397

    Article  CAS  Google Scholar 

  • Gomes C, Moreira RG, Castell-Perez E (2011) Poly (DL-lactide-co-glycolide)(PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76:N16–N24

    Article  CAS  Google Scholar 

  • Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interf Sci 128:227–248

    Article  Google Scholar 

  • Hill LE, Taylor TM, Gomes C (2013) Antimicrobial Efficacy of Poly (DL-lactide-co-glycolide)(PLGA) nanoparticles with entrapped cinnamon bark extract against listeria monocytogenes and salmonella typhimurium. J Food Sci 78:N626–N632

    Article  Google Scholar 

  • Holmberg K (2003) Organic reactions in microemulsions. Curr Opin Colloid Interface Sci 8:187–196

    Article  CAS  Google Scholar 

  • Janaswamy S, Gill KL, Campanella OH, Pinal R (2013) Organized polysaccharide fibers as stable drug carriers. Carbohydr Polym 94:209–215

    Article  CAS  Google Scholar 

  • Janaswamy S, Youngren SR (2012) Hydrocolloid-based nutraceutical delivery systems. Food Funct 3:503–507

    Article  CAS  Google Scholar 

  • Jia B, Zhou J, Zhang L (2011) Electrospun nano-fiber mats containing cationic cellulose derivatives and poly (vinyl alcohol) with antibacterial activity. Carbohydr Res 346:1337–1341

    Article  CAS  Google Scholar 

  • Kim IH, Lee H, Kim JE, Song KB, Lee YS, Chung DS, Min SC (2013) Plum Coatings of Lemongrass Oil-incorporating Carnauba Wax-based Nanoemulsion. J Food Sci 78:E1551–E1559

    Article  CAS  Google Scholar 

  • Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 60:7548–7555

    Article  CAS  Google Scholar 

  • McClements D (2005) Emulsion ingredients. Food Emul Princ Pract Tech:95–174

    Google Scholar 

  • McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  CAS  Google Scholar 

  • McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interf Sci 159:213–228

    Article  CAS  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  Google Scholar 

  • Prince LM (1967) A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface. J Colloid Interface Sci 23:165–173

    Article  CAS  Google Scholar 

  • Rance DG, Friberg S (1977) Micellar solutions versus microemulsions. J Colloid Interface Sci 60:207–209

    Article  CAS  Google Scholar 

  • Rico-Muñoz E, Davidson P (1983) Effect of corn oil and casein on the antimicrobial activity of phenolic antioxidants. J Food Sci 48:1284–1288

    Article  Google Scholar 

  • Ruckenstein E, Chi J (1975) Stability of microemulsions. J Chem Soc Faraday Trans 2 71:1690–1707

    Article  CAS  Google Scholar 

  • Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2014) Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control 37:292–297

    Article  CAS  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Appl 3:1

    CAS  Google Scholar 

  • Sugumar S, Nirmala J, Ghosh V, Anjali H, Mukherjee A, Chandrasekaran N (2013) Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J Basic Microbiol 53:677–685

    Article  CAS  Google Scholar 

  • Taylor TM, Weiss J, Davidson PM, Bruce BD (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Terjung N, Löffler M, Gibis M, Hinrichs J, Weiss J (2012) Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct 3:290–301

    Article  CAS  Google Scholar 

  • Thapon J, Brule G (1986) Effets du pH et de la forme ionique sur l'affinité lysozyme-caséines. Lait 66:19–30

    Article  CAS  Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Xiao D, Davidson PM, Zhong Q (2011) Spray-dried zein capsules with coencapsulated nisin and thymol as antimicrobial delivery system for enhanced antilisterial properties. J Agric Food Chem 59:7393–7404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanika Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Bhargava, K. (2017). Delivery Systems for Introduction of Natural Antimicrobials into Foods. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_8

Download citation

Publish with us

Policies and ethics