Skip to main content

Natural Food Antimicrobials of Animal Origin

  • Chapter
  • First Online:
Book cover Microbial Control and Food Preservation

Abstract

Various compounds found in animals possess antimicrobial activity (Board, New methods of food preservation, Springer, New York, 1995; Phoenix et al., Antimicrobial peptides, Wiley-VCH Verlag, GmbH & Co. KGaA, 2013). These innate antimicrobials, known as antimicrobial peptides (AMPs), often are part of the various immunity mechanisms of these animals. For example, the presence of endogenous peptides (natural or induced) provide effective means of defense against pathogens. Some AMPs may be used in the food industry as preservatives to prevent the growth of specific pathogens, including Gram-positive and Gram-negative bacteria, viruses, parasites, yeast and molds.

Abstract

Various compounds found in animals possess antimicrobial activity (Board 1995; Phoenix et al. 2013). These innate antimicrobials, known as antimicrobial peptides (AMPs), often are part of the various immunity mechanisms of these animals. For example, the presence of endogenous peptides (natural or induced) provide effective means of defense against pathogens. Some AMPs may be used in the food industry as preservatives to prevent the growth of specific pathogens, including Gram-positive and Gram-negative bacteria, viruses, parasites, yeast and molds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdou AM, Higashiguchi S, Aboueleinin AM, Kim M, Ibrahim HR (2007) Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control 18:173–178

    Article  CAS  Google Scholar 

  • Aguilera O, Quiros LM, Fierro JF (2003) Transferrins selectively cause ion efflux through bacterial and artificial membranes. FEBS Lett 548:5–10

    Article  CAS  Google Scholar 

  • Ali A, Zi Wei Y, Mustafa MA (2014) Exploiting propolis as an antimicrobial edible coating to control post-harvest anthracnose of bell pepper. Pack Technol Sci 28:173–179

    Article  CAS  Google Scholar 

  • Alnaqdy A, Al-Jabri A, Al Mahrooqui Z, Nsanze H (2005) Inhibiton effect of honey on the adherence of Salmonella to epithelial cells in vitro. Int J Food Microbiol 103:347–351

    Article  Google Scholar 

  • Alvarez-Suarez JM, Tulpani S, Díaz D, Estevez Y, Romandini E, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M (2010) Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem Toxicol 48:2490–2499

    Article  CAS  Google Scholar 

  • Ammendolia MG, Pietrantoni A, Tinari A, Valenti P, Superti F (2007) Bovine lactoferrin inhibits echovirus endocytic pathway by interacting with viral structural polypeptides. Antivir Res 73:151–160

    Article  CAS  Google Scholar 

  • Andres MT, Fierro JF (2010) Antimicrobial mechanism of action of transferrins: selective inhibition of H+−ATPase. Antimicrob Agents Chemother 54:4335–4342

    Article  CAS  Google Scholar 

  • Arques JL, Rodriguez E, Nunez M, Medina M (2008) Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J Dairy Sci 91:70–75

    Article  CAS  Google Scholar 

  • Ávila M, Gómez-Torres N, Hernández M, Garde S (2014) Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int J Food Microbiol 172:70–75

    Article  CAS  Google Scholar 

  • Ayaad TH, Shaker GH, Almuhnaa AM (2012) Isolation of antimicrobial peptides from Apis florae and Apis cárnica in Saudi Arabia and investigation of antimicrobial properties of natural honey samples. J King Saud University - Sci 24:193–200

    Article  Google Scholar 

  • Baker EN, Baker HM (2005) Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 62:2531–2539

    Article  CAS  Google Scholar 

  • Balcao VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA (2013) Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll 32:425–431

    Article  CAS  Google Scholar 

  • Bankova VS, de Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15

    Article  CAS  Google Scholar 

  • Barbiroli A, Bonomi F, Capretti G, Iametti S, Manzoni M, Piergiovanni L, Rollini M (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26:387–392

    Article  CAS  Google Scholar 

  • Beekman SA, VanDroogenbroeck MAD, DeCock JA (2007) Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasión in HD11 chicken macrophages. Vet Res 38:729–739

    Article  CAS  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    Article  CAS  Google Scholar 

  • Benkerroum N (2008) Antimicrobial activity of lysozyme with special relevance to milk. African J Biotechnol 7:4856–4867

    CAS  Google Scholar 

  • Blanquicet R, Flórez C, González Y, Meza E, Rodríguez JI (2015) Synthesis and film properties of chitosan and whey. Polímeros 25:58–69

    Article  Google Scholar 

  • Board RG (1995) Natural antimicrobials from animals. In: Gould GW (ed) New methods of food preservation. Springer, New York, pp 40–57. (Chapter 3)

    Chapter  Google Scholar 

  • Boland JS, Davidson PM, Weiss J (2003) Enhanced inhibition of Escherichia coli O157:H7 by lysozyme and chelators. J Food Prot 66:1783–1789

    Article  CAS  Google Scholar 

  • Boussouel N, Mathieu F, Revol-Junelles AM, Milliere JB (2000) Effects of combinations of lactoperoxidase system and nisin on the behaviour of Listeria monocytogenes ATCC 15313 in skim milk. Int J Food Microbiol 61:169–175

    Article  CAS  Google Scholar 

  • Brandenburg K, Heinbockel L, Correa W, Lohner K (2016) Peptides with dual mode of action: killing and preventing endotoxin-induced sepsis. Biochim Biophys Acta 1858:971–979

    Article  CAS  Google Scholar 

  • Brogden KA, Klafa VC, Ackermann MR, Palmquist DE, McCray PB Jr, Track BF (2001) The ovine cathelicidin SMAP29 kills ovine respiratory pathogens in vitro and in an ovine model of pulmonary infection. Antimicrob Agents Chemother 45:331–334

    Article  CAS  Google Scholar 

  • Brown CA, Baowu W, Jun-Hyun O (2008) Antimicrobial activity of lactoferrin against foodborne pathogenic bacteria incorporated into edible chitosan film. J Food Prot 71:319–324

    Article  CAS  Google Scholar 

  • Brudzynski K (2006) Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can J Microbiol 52:1228–1237

    Article  CAS  Google Scholar 

  • Brudzynski K, Kim L (2011) Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity. Food Chem 126:1155–1163

    Article  CAS  Google Scholar 

  • Bulman Z, Le P, Hudson AO, Savka MA (2011) A novel property of propolis (bee glue): Anti-pathogenic activity by inhibition of N-acyl-homoserine lactone mediated signaling in bacteria. J Ethnopharmacol 138:788–797

    Article  CAS  Google Scholar 

  • Byrne PF (2006) Safety and public acceptance of transgenic products. Crop Sci 46:113–117

    Article  Google Scholar 

  • Carryn S, Schaefer DA, Imboden M, Homan EJ, Bremel RD, Riggs MW (2012) Phospholipases and cationic peptides inhibit Cryptosporidium parvum sporozoite infectivity by parasiticidal and non-parasiticidal mechanisms. J Parasitol 98:199–204

    Article  CAS  Google Scholar 

  • Chen PW, Jheng TT, Shyu CL, Mao FC (2013) Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. J Dairy Sci 96:1438–1446

    Article  CAS  Google Scholar 

  • Cheng JB, Wang JQ, Bu DP, Liu GL, Zhang CG, Wei HY, Zhou LY, Wang JZ (2008) Factors affecting the lactoferrin concentration in bovine milk. J Dairy Sci 91:970–976

    Article  CAS  Google Scholar 

  • Codex Alimentarius (2001) Codex Standard for Honey Codex Stan 12-19811

    Google Scholar 

  • Commission Regulation (EU) (2011) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additive. Off J Eur Union

    Google Scholar 

  • Commission Regulation (EU) (2013) No 509/2013 of 3 June 2013 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of several additives in certain alcoholic beverages. Off J Eur Union

    Google Scholar 

  • Cooper CA, Maga EA, Murray JD (2014) Consumption of transgenic milk containing the antimicrobials lactoferrin and lysozyme separately and in conjunction by 6-week-old pigs improves intestanl and systemic health. J Dairy Res 81:30–37

    Article  CAS  Google Scholar 

  • Czihal P, Nimptsch A, Möllmann U, Zipfel P, Hoffmann R (2007) Antimicrobial activity of apidaecin peptides. Eur Soc Clin Microbiol Infect Dis 29:S602

    Google Scholar 

  • Das H, Sharma B, Kumar A (2006) Cloning and characterization of novel cathelicidin cDNA sequence of Bubalus bubalis homologous to Bos taurus cathelicidin-4. DNA Seq 17:407–414

    Article  CAS  Google Scholar 

  • Dias LG, Pereira AP, Estevinho LM (2012) Comparative study of different Portuguese samples of propolis: pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food Chem Toxicol 50:4246–4253

    Article  CAS  Google Scholar 

  • Dürr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  • Ellison RT III, Giehl TJ (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    Article  CAS  Google Scholar 

  • Ellison RT III, Giehl TJ, LaForce FM (1988) Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect Immun 56:2774–2781

    CAS  Google Scholar 

  • El-Soud NHA (2012) Honey between traditional uses and recent medicine. Macedonian J Med Sci 5:205–214

    Google Scholar 

  • FAO/WHO (2006) Benefits and potential risks of the Lactoperoxidase system of raw milk preservation. Report on a FAO/WHO technical meeting, Rome Italy, 2005. Food and Agriculture Organization and World Health Organization of the United Nations

    Google Scholar 

  • Finnegan S, Percival SL (2014) EDTA: an antimicrobial and antibiofilm agent for use in wound care. Adv Wound Care 4:415–421

    Article  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    Article  CAS  Google Scholar 

  • Flores-Villaseñor H, Canizalez-Roman A, Velazquez-Roman J, Nazmi K, Bolscher JG, Leon-Sicairos N (2012a) Protective effects of lactoferrin chimera and bovine lactoferrin in a mouse model of enterohaemorrhagic Escherichia coli O157:H7 infection. Biochim Cell Biol 90:405–411

    Article  CAS  Google Scholar 

  • Flores-Villaseñor H, Canizalez-Roman A, de la Garza M, Nazmi K, Bolscher JG, Leon-Sicairos N (2012b) Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Escherichia coli in HEp-2 cells. Biochimie 94:1935–1942

    Article  CAS  Google Scholar 

  • Fox PF, Kelly AL (2006a) Review: indigenous enzymes overview and historical aspects – Part 1. Int J Dairy 6:500–516

    Article  CAS  Google Scholar 

  • Fox PF, Kelly AL (2006b) Review: indigenous enzymes overview and historical aspects – Part 2. Int J Dairy 6:517–532

    Article  CAS  Google Scholar 

  • Furlund CB, Kristoffersen AB, Devold TG, Vegarud GE, Jonassen CM (2012) Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture. Nutr Res 32:503–513

    Article  CAS  Google Scholar 

  • Fweja LW, Lewis MJ, Grandison AS (2008) Challenge testing the lactoperoxidase system against a range of bacteria using different activation agents. J Dairy Sci 91:2566–2574

    Article  CAS  Google Scholar 

  • García-Montoya I, González-Chávez SA, Salazar-Martínez J, Arévalo-Gallegos S, Sinagawa-García S, Rascón-Cruz Q (2013) Expression and characterization of recombinant bovine lactoferrin in E. coli. Biometals 26:113–122

    Article  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 5:3142–3146

    Google Scholar 

  • Giansanti F, Massucci MT, Giardi MF, Nozza F, Pulsinelli E, Nicolini C, Botti D, Antonini G (2005) Antiviral activity of ovotransferrin derived peptides. Biochim Biophys Res Commun 331:69–73

    Article  CAS  Google Scholar 

  • Giansanti F, Leboffe L, Pitari G, Ippoliti R, Antonini G (2012) Physiological roles of ovotransferrin. Biochim Biophys Acta 1820:218–225

    Article  CAS  Google Scholar 

  • Gill AO, Holley RA (2000) Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J Food Prot 63:1338–1346

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Gómez-Guillén MC, Fernández-Martín F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocoll 25:1461–1469

    Article  CAS  Google Scholar 

  • Groves ML (1960) The isolation of a red protein from milk. J Amer Chem Soc 82:3345–3350

    Article  CAS  Google Scholar 

  • Hajji S, Chaker A, Jridi M, Maalej H, Jellouli K, Boufi S, Nasri M (2016) Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ Sci Pollut Res 23:15310–15320

    Article  CAS  Google Scholar 

  • Haney EF, Nazmi K, Bolscher JG, Vogel HJ (2012) Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Biochim Biophys Acta 1818:762–775

    Article  CAS  Google Scholar 

  • Haug A, Hostmark AT, Harstad OM (2007) Bovine milk in human nutrition--a review. Lipids Health Dis 6:25. https://doi.org/10.1186/1476-511X-6-25

    Article  CAS  Google Scholar 

  • Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, Vervoort J (2011) The host defense proteome of human and bovine milk. PLoS One 6:e19433

    Article  CAS  Google Scholar 

  • Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R (1997) Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 41:54–59

    CAS  Google Scholar 

  • Hu W, Zhao J, Wang J, Yu T, Wang J, Li N (2012) Transgenic milk containing recombinant human lactoferrin modulates the intestinal flora in piglets. Biochim Cell Biol 90:485–496

    Article  CAS  Google Scholar 

  • Ibrahim HR, Higashiguchi S, Koketsu M, Juneja LR, Kim M, Yamamoto T (1996) Partially unfolded lysozyme at neutral pH agglutinates and kills Gram-negative and Gram-positive bacteria through membrane damage mechanism. J Agric Food Chem 44:3799–3806

    Article  CAS  Google Scholar 

  • Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim Biophys Acta 1523:196–205

    Article  CAS  Google Scholar 

  • Jeon YJ, Kamil JYVA, Shahidi F (2002) Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J Agric Food Chem 50:5167–5178

    Article  CAS  Google Scholar 

  • Jerkovic I, Marijanovic Z (2010) Volatile composition screening of Salix spp. nectar honey: Benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chem Biodivers 7:2309–2325

    Article  CAS  Google Scholar 

  • Jerkovic I, Marijanovic Z, Malenica-Staver M, Lusic D (2010) Volatile from a rare Acer spp. honey sample from Croatia. Molecules 15:4572–4582

    Article  CAS  Google Scholar 

  • Johnston WH, Ashley C, Yeiser M, Harris CL, Stolz SI, Wampler JL, Wittke A, Cooper TR (2015) Growth and tolerance of formula with lactoferrin in infants through one year of age: double-blind, randomized, controlled trial. BMC Pediatr 15:173

    Article  CAS  Google Scholar 

  • Jollès P, Jollès J (1984) Whats new in lysozyme research? Mol Cell Biochim 63:165–189

    Google Scholar 

  • Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol 67:373–379

    Article  CAS  Google Scholar 

  • Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, Weizheng T, Ping Y, Lingying C, Meng M (2015) Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition 31:304–309

    Article  CAS  Google Scholar 

  • Kim Y, Chung H (2011) The effects of Korean propolis against foodborne pathogens and transmission electron microscopic examination. New Biotechnol 28:713–718

    Article  CAS  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer LI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236

    Article  CAS  Google Scholar 

  • Kwakman PHS, Zaat SAJ (2012) Antibacterial components of honey. IUBMB Life 64:48–55

    Article  CAS  Google Scholar 

  • Kwakman PHS, te Velde AA, de Boer L, Vandenbroucke-Grauls CMJE, Zaat SAJ (2011) Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6:e17709

    Article  CAS  Google Scholar 

  • Laffan AM, McKenzie R, Forti J, Conklin D, Marcinko R, Shrestha R, Bellantoni M, Greenough WB III (2011) Lactoferrin for the prevention of post-antibiotic diarrhoea. J Health Popul Nutr 29:547–551

    Google Scholar 

  • Lee JY, Yang ST, Kim HJ, Lee SK, Jung HH, Shin SY, Kim JI (2009) Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide. BMB Rep 42:586–592

    Article  CAS  Google Scholar 

  • Leitch EC, Willcox MD (1999) Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol 48:867–871

    Article  CAS  Google Scholar 

  • Leon-Sicairos N, Lopez-Soto F, Reyes-Lopez M, Godinez-Vargas D, Ordaz-Pichardo C, de la Garza M (2006) Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin Med Res 4:106–113

    Article  CAS  Google Scholar 

  • Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, Zazueta-Beltran J, Nazmi K, Gomez-Gil B, Bolscher JG (2009) Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91:133–140

    Article  CAS  Google Scholar 

  • Liburdi K, Benucci I, Esti M (2014) Lysozyme in wine: an overview of current and future applications. Comp Rev Food Sci Food Safety 13:1062–1073

    Article  CAS  Google Scholar 

  • López-Soto F, Leon-Sicairos N, Nazmi K, Bolscher JG, de la Garza M (2010) Microbicidal effect of the lactoferrin peptides lactoferricin 17-30, lactoferrampin 265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 23:563–568

    Article  CAS  Google Scholar 

  • Loretz M, Stephan R, Zweifel C (2010) Antibacterial activity of decontamination treatments for cattle hides and beef carcasses. Food Control 22:347–359

    Article  CAS  Google Scholar 

  • Lu LC, Chen YW, Chou CC (2005) Antibacterial activity of propolis against Staphylococcus aureus. Int J Food Microbiol 102:213–220

    Article  CAS  Google Scholar 

  • Maga EA, Desai PT, Weimer BC, Dao N, Kultz D, Murray JD (2012) Consumption of lysozyme-rich milk can alter microbial fecal populations. Appl Environ Microbiol 78:6153–6160

    Article  CAS  Google Scholar 

  • Makki F, Durance TD (1996) Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effects in bee. Food Res Int 29:635–645

    Article  CAS  Google Scholar 

  • Mangalassary S, Han I, Rieck J, Acton J, Dawson P (2008) Effect of combining nisin and/or lysozyme with in-package pasteurization control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiol 25:866–870

    Article  CAS  Google Scholar 

  • Marks NE, Grandison AS, Lewis MJ (2001) Challenge testing of the lactoperoxidase system in pasteurized milk. J Appl Microbiol 91:735–741

    Article  CAS  Google Scholar 

  • Martinioni S, Ranzato E (2015) Propolis: a new frontier for wound healing? Burns Trauma 3:9

    Article  Google Scholar 

  • Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214

    Article  CAS  Google Scholar 

  • Melliou E, Chinou I (2011) Chemical constituents of selected unifloral Gleek bee-honeys with antimicrobial activity. Food Chem 129:284–290

    Article  CAS  Google Scholar 

  • Min S, Han JH, Harris LJ, Krochta JM (2005) Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. J Food Prot 68:2317–2325

    Article  CAS  Google Scholar 

  • Mishra B, Leishangthem GD, Gill K, Singh AK, Das S, Singh K, Xess I, Dinda A, Kapil A, Patro IK, Dey S (2013) A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug-resistant bacteria and Candida. Biochim Biophys Acta 1828:677–686

    Article  CAS  Google Scholar 

  • Mohammadzadeh S, Shariatpanahi M, Hamedi M, Ahmadkhaniha R, Samadi N, Nasser Ostad S (2007) Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem 103:1097–1103

    Article  CAS  Google Scholar 

  • Molan PC (1992) The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World 73:5–28

    Article  Google Scholar 

  • Mosquito S, Zegarra G, Villanueva C, Ruiz J, Ochoa TJ (2012) Effect of bovine lactoferrin on the minimum inhibitory concentrations of ampicillin and trimethoprim-sulfamethoxazole for clinical Shigella spp. strains. Biochim Cell Biol 90:412–416

    Article  CAS  Google Scholar 

  • Murata M, Wakabayashi H, Yamauchi K, Abe F (2013) Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin. J Dairy Sci 96:4891–4898

    Article  CAS  Google Scholar 

  • Murdock CA, Matthews KR (2002) Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J Appl Microbiol 93:850–856

    Article  CAS  Google Scholar 

  • Murdock CA, Cleveland J, Matthews KR, Chikindas ML (2007) The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett Appl Microbiol 44:255–261

    Article  CAS  Google Scholar 

  • Nakimbugwe D, Masschalck B, Anim G, Michiels CM (2006) Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. Int J Food Microbiol 112:19–25

    Article  CAS  Google Scholar 

  • Nattress FM, Baker LP (2003) Effects of treatment with lysozyme and nisin on the microflora and sensory properties of commercial pork. Int. J. Food Micrbiol 85:259–267

    Article  CAS  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  Google Scholar 

  • O’Mahony JA, Fox PF (2014) Milk: an overview. In: Singh H, Boland M, Thompson A (eds) Milk proteins from expression to food, 2nd edn. Elsevier, Oxford, UK

    Google Scholar 

  • Ochoa TJ, Cleary TG (2004) Lactoferrin disruption of bacterial type III secretion systems. Biometals 17:257–260

    Article  CAS  Google Scholar 

  • Ochoa TJ, Cleary TG (2009) Effect of lactoferrin on enteric pathogens. Biochimie 91:30–34

    Article  CAS  Google Scholar 

  • Ochoa TJ, Noguera-Obenza M, Ebel F, Guzman CA, Gomez HF, Cleary TG (2003) Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun 71:5149–5155

    Article  CAS  Google Scholar 

  • Oshima S, Rea MC, Lothe S, Morgan S, Begley M, O’Connor PM, Fitzsimmons A, Kamikado H, Walton R, Ross RP, Hill C (2012) Efficacy of organic acids, bacteriocins, and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula. J Food Prot 75:1734–1742

    Article  CAS  Google Scholar 

  • Pandeya DR, D’Souza R, Rahman MM, Akhter S, Hyeon-Jin K, Seong-Tshool H (2012) Host-microbial interaction in the mammalian intestine and their metabolic role inside. Biomed Res (0970-938X) 23:9–21

    Google Scholar 

  • Park YW, Nam MS (2015) Bioactive peptides in milk and dairy products: a review. Korean J Food Sci An 35:831–840

    Article  Google Scholar 

  • Park SL, Stan SD, Daeschel MA, Zhao Y (2005) Antifungal coatings on fresh strawberries (Fragaria x ananassa) to control mold growth during cold storage. Food Microbiol Safety 70:M202–M207

    CAS  Google Scholar 

  • Pastor C, Sánchez-González L, Marcilla A, Chiralt A, Cháfer MC, González-Martínez C (2011) Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biol Tech 60:64–70

    Article  CAS  Google Scholar 

  • Pellegrini A, Thomas U, Bramaz N, Klauser S, Hunziker P, von Fellenberg R (1997) Identification and isolation of bactericidal domain in chicken egg white lysozyme. J Appl Microbiol 82:372–378

    Article  CAS  Google Scholar 

  • Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. In: Antimicrobial peptides. Wiley-VCH Verlag, GmbH & Co. KGaA, pp 1–37.

    Google Scholar 

  • Piccinini R, Binda E, Belotti M, Casirani G, Zecconi A (2005) Comparison of blood and milk non-specific immune parameters in heifers after calving in relation to udder health. Vet Res 36:747–757

    Article  CAS  Google Scholar 

  • Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L, Superti F (2003) Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother 47:2688–2691

    Article  CAS  Google Scholar 

  • Priyadarshini S, Kansal VK (2002) Purification, characterization, antibacterial activity and N-terminal sequencing of buffalo-milk lysozyme. J Dairy Res 69:419–431

    Article  CAS  Google Scholar 

  • Proctor VA, Cunningham FE (1988) The chemistry of lysozyme and its use as a food preservative and pharmaceutical. CRC Crit Rev Food Sci Nutr 26:359–395

    Article  CAS  Google Scholar 

  • Règlement (UE) (2012) No 471/2012 De La Commission du 4 juin 2012 modifiant l’annexe II du règlement (CE) no 1333/2008 du Parlement européen et du Conseil en ce qui concerne l’utilisation de lysozyme (E 1105) dans la bière. J Off Union Eur L 144:19–21

    Google Scholar 

  • Roberts AK, Chierici R, Sawatzki G, Hill MJ, Volpato S, Vigi V (1992) Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Paediatr 81:119–124

    Article  CAS  Google Scholar 

  • Rodriguez E, Tomillo J, Nunez M, Medina M (1997) Combined effect of bacteriocin-producing lactic acid bacteria and lactoperoxidase system activation on Listeria monocytogenes in refrigerated raw milk. J Appl Microbiol 83:389–395

    Article  CAS  Google Scholar 

  • Roller S, Covill N (2000) The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads. J Food Prot 63:202–209

    Article  CAS  Google Scholar 

  • Sadredinamin M, Mehrnejad F, Hosseini P, Doustdar F (2016) Antimicrobial peptides (AMPs). Novelty Biomed 2:70–76

    Google Scholar 

  • Safarik I, Sabatkova Z, Tokar O, Safarikova M (2007) Margnetic exchange isolation of lysozyme from native hen egg white. Food Technol Biotechnol 45:335–359

    Google Scholar 

  • Sagoo S, Board R, Roller S (2002) Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiol 19:175–182

    Article  CAS  Google Scholar 

  • Scocchi M, Bontempo D, Boscolo S, Tomasinsig L, Giulotto E, Zanetti M (1999) Novel cathelicidins in horse leukocytes. FEBS Lett 457:459–464

    Article  CAS  Google Scholar 

  • Scocchi M, Mardirossian M, Runti G, Benincasa M (2016) Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Top Med Chem 16:76–88

    Article  CAS  Google Scholar 

  • Seganti L, Di Biase AM, Marchetti M, Pietrantoni A, Tinari A, Superti F (2004) Antiviral activity of lactoferrin towards naked viruses. Biometals 17:295–299

    Article  CAS  Google Scholar 

  • Seol K-H, Lim D-G, Jang A, Jo C, Lee M (2009) Antimicrobial effect of kappacarrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 °C. Meat Sci 83:479–483

    Article  CAS  Google Scholar 

  • Shamova O, Brogden KA, Zhao C, Nguyen T, Kokryakov VN, Lehrer RI (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67:4106–4111

    CAS  Google Scholar 

  • Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP (2013) Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 2013:390230

    Article  CAS  Google Scholar 

  • Sobrino-López A, Martín-Belloso O (2008) Enhancing the lethal effect of high-intensity pulsed electric field in milk by antimicrobial compounds as combined hurdles. J Dairy Sci 91:1759–1768

    Article  CAS  Google Scholar 

  • Sommer F, Backhed F (2013) The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  Google Scholar 

  • Stephens JM, Schlothauer RC, Morris DM, Yang D, Feamley L, Greenwood DR, Loomes KM (2010) Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem 120:78–86

    Article  CAS  Google Scholar 

  • Superti F, Ammendolia MG, Valenti P, Seganti L (1997) Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med Microbiol Immunol 186:83–91

    Article  CAS  Google Scholar 

  • Tan YM, Lim SH, Tay BY, Lee MW, Thian ES (2015) Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater Res Bull 69:142–146

    Article  CAS  Google Scholar 

  • Tang Z, Zhang Y, Stewart AF, Geng M, Tang X, Tu Q, Yin Y (2010) High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expr Purif 73:132–139

    Article  CAS  Google Scholar 

  • Tang XS, Shao H, Li TJ, Tang ZR, Huang RL, Wang SP, Kong XF, Wu X, Yin YL (2012a) Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets. Appl Biochim Biotechnol 168:887–898

    Article  CAS  Google Scholar 

  • Tang XS, Tang ZR, Wang SP, Feng ZM, Zhou D, Li TJ, Yin YL (2012b) Expression, purification, and antibacterial activity of bovine lactoferrampin-lactoferricin in Pichia pastoris. Appl Biochim Biotechnol 166:640–651

    Article  CAS  Google Scholar 

  • Taormina PJ, Niemira BA, Beuchat LR (2001) Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol 69:217–225

    Article  CAS  Google Scholar 

  • Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74:4137–4142

    Article  CAS  Google Scholar 

  • Touch V, Hayakawa S, Yamada S, Kaneko S (2004) Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on Salmonella Enteritidis in animal or vegetable foods. Int J Food Microbiol 93:175–183

    Article  CAS  Google Scholar 

  • Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755

    Article  CAS  Google Scholar 

  • Truchado P, López-Gálvez F, Gil MI, Tomás-Barberán FA, Allende A (2009) Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chem 115:1337–1344

    Article  CAS  Google Scholar 

  • Tsai GJ, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish Sci 68:170–177

    Article  CAS  Google Scholar 

  • Turchany JM, Aley SB, Gillin FD (1995) Giardicidal activity of lactoferrin and N-terminal peptides. Infect Immun 63:4550–4552

    CAS  Google Scholar 

  • Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384

    CAS  Google Scholar 

  • USDA FSIS (2014) FSIS Directive 7120.1. Safe and suitable ingredients used in the production of meat, poultry, and egg products. https://www.fsis.usda.gov/wps/portal/fsis/topics/regulations/directives/7000-series/safe-suitable-ingredients-related-document. Accessed 5 Jan 2017

  • Uzzell T, Stolzenberg ED, Shinnar AE, Zasloff M (2003) Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 24:1655–1667

    Article  CAS  Google Scholar 

  • Valenti P, Antonini G, von Hunolstein G, Visca P, Orsi N, Antonini E (1983) Studies of the antimicrobial activity of ovotransferrin. Int J Tissue React 5:97–105

    CAS  Google Scholar 

  • van der Kraan MI, Groenink J, Nazmi K, Veerman EC, Bolscher JG, Nieuw Amerongen AV (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25:177–183

    Article  CAS  Google Scholar 

  • Vannini L, Lanciotti R, Baldi D, Guerzoni ME (2004) Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int J Food Microbiol 94:123–135

    Article  CAS  Google Scholar 

  • Vargas M, Albors A, Chiralt A, González-Martínez C (2006) Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biol Technol 41:164–171

    Article  CAS  Google Scholar 

  • Wakabayashi H, Yamauchi K, Takase M (2006) Lactoferrin research, technology and applications. Int Dairy J 16:1241–1251

    Article  CAS  Google Scholar 

  • Wakabayashi H, Yamauchi K, Takase M (2008) Inhibitory effects of bovine lactoferrin and lactoferricin B on Enterobacter sakazakii. Biocontrol Sci 13:29–32

    Article  CAS  Google Scholar 

  • Wang Y, Liu L, Zhou J, Ruan X, Lin J, Fu L (2015) Effect of chitosan nanoparticle coatings on the quality changes of postharbest whiteleg shrimp, Litopenaeus vannamei, during storage at 4 °C. Food Bioprocess Technol 8:907–915

    Article  CAS  Google Scholar 

  • Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, Lei HY, Yeh TM (2005) Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antivir Res 67:31–37

    Article  CAS  Google Scholar 

  • Weston RJ, Mitchell KR, Allen KL (1999) Antibacterial phenolic components of New Zealand manuka honey. Food Chem 64:295–301

    Article  CAS  Google Scholar 

  • Weston RJ, Brocklebank LK, Lu Y (2000) Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem 70:427–435

    Article  CAS  Google Scholar 

  • Wharton BA, Balmer SE, Scott PH (1994) Faecal flora in the newborn. Effect of lactoferrin and related nutrients. Adv Exp Med Biol 357:91–98

    Article  CAS  Google Scholar 

  • Wheeler TT, Smolenski GA, Harris DP, Gupta SK, Haigh BJ, Broadhurst MK, Molenaar AJ, Stelwagen K (2012) Host-defence-related proteins in cows’ milk. Animal 6:415–422

    Article  CAS  Google Scholar 

  • White JW (1978) Honey. Adv Food Sci 24:287–374

    CAS  Google Scholar 

  • Wilkins AL, Lu Y, Tan S-T (1993) Extractives from New Zealand honeys. 4-Linalool derivatives and other components from Nodding Thistle (Carduus nutans) honey. J Agric Food Chem 41:873–878

    Article  CAS  Google Scholar 

  • Wu J, Acero-Lopez A (2012) Ovotransferrin: Structure, bioactivities, and preparation. Food Res Int 46:480–487

    Article  CAS  Google Scholar 

  • Xiao Y, Cai Y, Bommineni YR, Fermando SC, Prakash O, Gilliland SE, Zhang G (2006) Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 281:1858–2867

    Google Scholar 

  • Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, Yu T, Li R, Zhao J, Zhang L, Dai Y, Li N (2011) Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 6:e17593

    Article  CAS  Google Scholar 

  • Yekta MA, Verdonck F, Broeck WVD, Goddeeris BM, Cox E, Vanrompay D (2010) Lactoferrin inhibits E. coli O157:H7 growth and attachment to intestinal epithelial cells. Vet Med 55:359–368

    Google Scholar 

  • Yen CC, Lin CY, Chong KY, Tsai TC, Shen CJ, Lin MF, Su CY, Chen HL, Chen CM (2009) Lactoferrin as a natural regimen for selective decontamination of the digestive tract: recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonates from pathogenic challenge in the gastrointestinal tract. J Infect Dis 199:590–598

    Article  CAS  Google Scholar 

  • Yen MH, Chiu CH, Huang YC, Lin TY (2011) Effects of lactoferrin-containing formula in the prevention of enterovirus and rotavirus infection and impact on serum cytokine levels: a randomized trial. Chang Gung Med J 34:395–402

    Google Scholar 

  • Yener FYG, Korel F, Yemenicioğlu A (2009) Antimicrobial activity of lactoperoxidase system incorporated into cross-linked alginate films. J Food Sci 74:M73–M79

    Article  CAS  Google Scholar 

  • Zapico P, Medina M, Gaya P, Nunez M (1998) Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. Int J Food Microbiol 40:35–42

    Article  CAS  Google Scholar 

  • Zhao XY, Hutchens TW (1994) Proposed mechanisms for the involvement of lactoferrin in the hydrolysis of nucleic acids. Adv Exp Med Biol 357:271–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba Verónica Arias-Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arias-Rios, E.V., Cabrera-Díaz, E., Márquez-González, M., Castillo, A. (2017). Natural Food Antimicrobials of Animal Origin. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_4

Download citation

Publish with us

Policies and ethics