Skip to main content

Mechanisms Underlying the Beneficial Role of Probiotics in Diarrheal Diseases: Host–Microbe Interactions

  • Chapter
  • First Online:
Mechanisms Underlying Host-Microbiome Interactions in Pathophysiology of Human Diseases

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Probiotics are nonpathogenic microorganisms which, when administered in adequate amounts, confer health benefits to hosts. Advances in our understanding of the gut microbiome have spurred the use of probiotics for the treatment of a wide variety of gastrointestinal pathological conditions. Of these conditions, probiotic treatment in diarrheal diseases has shown particular promise. Multiple pre-clinical and clinical studies over the past decade have shown probiotics to significantly attenuate the effects of both acute and chronic diarrheal phenotypes. Only recently, studies have begun to unravel the mechanisms by which probiotics increase electrolyte and nutrient absorption, decrease secretion and counteract diarrheal diseases associated with infection and inflammation. However, the lack of a detailed mechanistic understanding of their beneficial effects in gut limits the development of probiotics-based novel therapeutics. This review provides an overview of the evidence-based analysis of the effects of probiotics, including a detailed description of the knowledge of mechanisms by which probiotics show benefits in diarrheal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Crohn’s disease

CFTR:

Cystic fibrosis transmembrane Conductance regulator

DRA:

Downregulated in adenoma

EPEC:

Enteropathogenic E-coli

FSK:

Forskolin

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

IECs:

Intestinal epithelial cells

IFN-γ:

Interferon-γ

MCT1:

Monocarboxylate transporter 1

NEC:

Necrotizing enterocolitis

NHE:

Na+/H+ exchanger

NKCC1:

Na-K-Cl co-transporter 1

PepT1:

Peptide transporter 1

RCT:

Randomized controlled trial

SCFA:

Short chain fatty acid

SGLT-1:

Sodium-dependent glucose cotransporter 1

STp:

Escherichia coli heat-stable enterotoxin

TcpC:

Toll/IL-1 receptor-containing (TIR-containing) protein C

TGF-β:

Transforming growth factor beta

TLR:

Toll-like receptor

UC:

Ulcerative colitis

VRE:

Vancomycin-resistant enterococci

ZO:

Zonula occludens

References

  • Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66(5):2001–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hassi HO, Mann ER, Sanchez B, English NR, Peake ST, Landy J et al (2014) Altered human gut dendritic cell properties in ulcerative colitis are reversed by Lactobacillus plantarum extracellular encrypted peptide STp. Mol Nutr Food Res 58(5):1132–1143

    Article  CAS  PubMed  Google Scholar 

  • Alvarez CS, Badia J, Bosch M, Gimenez R, Baldoma L (2016) Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol 7:1981

    PubMed  PubMed Central  Google Scholar 

  • Aragon G, Graham DB, Borum M, Doman DB (2010) Probiotic therapy for irritable bowel syndrome. Gastroenterol Hepatol (NY) 6(1):39–44

    Google Scholar 

  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236

    Article  CAS  PubMed  Google Scholar 

  • Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA et al (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138(7):1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borthakur A, Anbazhagan AN, Kumar A, Raheja G, Singh V, Ramaswamy K et al (2010) The probiotic Lactobacillus plantarum counteracts TNF-{alpha}-induced downregulation of SMCT1 expression and function. Am J Physiol Gastrointest Liver Physiol 299(4):G928–G934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borthakur A, Kumar A, Dudeja PK (2011) Mechanisms underlying Lactobacillus acidophilus-mediated modulation of intestinal butyrate absorption. Abstract presented at Summer Research Conference at Arizona

    Google Scholar 

  • Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O’Sullivan O et al (2017) The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol 17(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buts JP, De Keyser N, Marandi S, Hermans D, Sokal EM, Chae YH et al (1999) Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45(1):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo NA, Perdigon G, de Moreno de Leblanc A (2011) Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 11:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HQ, Yang J, Zhang M, Zhou YK, Shen TY, Chu ZX et al (2010a) Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol 299(6):G1287–G1297

    Article  CAS  PubMed  Google Scholar 

  • Chen HQ, Shen TY, Zhou YK, Zhang M, Chu ZX, Hang XM et al (2010b) Lactobacillus plantarum consumption increases PepT1-mediated amino acid absorption by enhancing protein kinase C activity in spontaneously colitic mice. J Nutr 140(12):2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB et al (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12(9):612–623

    Article  CAS  PubMed  Google Scholar 

  • Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS et al (2014) Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn’s disease patients: phenotypic and genetic pathogenic features. BMC Res Notes 7:748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Culligan EP, Hill C, Sleator RD (2009) Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 1(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    Article  PubMed  Google Scholar 

  • Gagnon M, Vimont A, Darveau A, Fliss I, Jean J (2016) Study of the ability of bifidobacteria of human origin to prevent and treat rotavirus infection using colonic cell and mouse models. PLoS One 11(10):e0164512

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M (2016) Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol 22(32):7186–7202

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson PR, Barrett JS (2010) The concept of small intestinal bacterial overgrowth in relation to functional gastrointestinal disorders. Nutrition 26(11):1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Gill RK, Borthakur A, Hodges K, Turner JR, Clayburgh DR, Saksena S et al (2007) Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J Clin Invest 117(2):428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Llorente C, Munoz S, Gil A (2010) Role of Toll-like receptors in the development of immunotolerance mediated by probiotics. Proc Nutr Soc 69(3):381–389

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Gillingham T, Guo Y, Meng D, Zhu W, Walker WA et al (2017) Secretions of Bifidobacterium infantis and Lactobacillus acidophilus protect intestinal epithelial barrier function. J Pediatr Gastroenterol Nutr 64(3):404–412

    Article  CAS  PubMed  Google Scholar 

  • Guzy C, Paclik D, Schirbel A, Sonnenborn U, Wiedenmann B, Sturm A (2008) The probiotic Escherichia coli strain Nissle 1917 induces gammadelta T cell apoptosis via caspase- and FasL-dependent pathways. Int Immunol 20(7):829–840

    Article  CAS  PubMed  Google Scholar 

  • Halfvarson J, Brislawn CJ, Lamendella R, Vazquez-Baeza Y, Walters WA, Bramer LM et al (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2:17004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan M, Kjos M, Nes I, Diep D, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736

    Article  CAS  PubMed  Google Scholar 

  • Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Wardenburg JB (2016) Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep 17((9):e201642282

    Google Scholar 

  • Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60(2–3):153–161

    Article  CAS  PubMed  Google Scholar 

  • Heuvelin E, Lebreton C, Bichara M, Cerf-Bensussan N, Heyman M (2010) A Bifidobacterium probiotic strain and its soluble factors alleviate chloride secretion by human intestinal epithelial cells. J Nutr 140(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Hirano J, Yoshida T, Sugiyama T, Koide N, Mori I, Yokochi T (2003) The effect of Lactobacillus rhamnosus on enterohemorrhagic Escherichia coli infection of human intestinal cells in vitro. Microbiol Immunol 47(6):405–409

    Article  CAS  PubMed  Google Scholar 

  • Ingrassia I, Leplingard A, Darfeuille-Michaud A (2005) Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn’s disease patients to adhere to and to invade intestinal epithelial cells. Appl Environ Microbiol 71(6):2880–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson-Henry KC, Nadjafi M, Avitzur Y, Mitchell DJ, Ngan BY, Galindo-Mata E et al (2005) Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J Infect Dis 191(12):2106–2117

    Article  PubMed  Google Scholar 

  • Klingspor S, Martens H, Caushi D, Twardziok S, Aschenbach JR, Lodemann U (2013) Characterization of the effects of Enterococcus faecium on intestinal epithelial transport properties in piglets. J Anim Sci 91(4):1707–1718

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna Rao R, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9(2):99–107

    Article  Google Scholar 

  • Krishnan M, Penrose HM, Shah NN, Marchelletta RR, McCole DF (2016) VSL#3 probiotic stimulates T-cell protein tyrosine phosphatase-mediated recovery of IFN-gamma-induced intestinal epithelial barrier defects. Inflamm Bowel Dis 22(12):2811–2823

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Hecht C, Priyamvada S, Anbazhagan AN, Alakkam A, Borthakur A et al (2012) Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in in vitro and in vivo models. Gastroenterology (Abstract) 142(5):S-542

    Article  Google Scholar 

  • Kumar A, Alrefai WA, Borthakur A, Dudeja PK (2015) Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 309(7):G602–G607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Anbazhagan AN, Coffing H, Chatterjee I, Priyamvada S, Gujral T et al (2016) Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 311(5):G817–GG26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A et al (2010) Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107(5):2159–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC et al (2016) Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol 22(11):3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser J et al (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47(5):646–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2012) Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-kappaB signaling in the intestine. Am J Physiol Gastrointest Liver Physiol 302(6):G608–G617

    Article  CAS  PubMed  Google Scholar 

  • Lomasney KW, Cryan JF, Hyland NP (2014) Converging effects of a Bifidobacterium and Lactobacillus probiotic strain on mouse intestinal physiology. Am J Physiol Gastrointest Liver Physiol 307(2):G241–G247

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang X, Kang N, Chen T, Ji H, Lv L et al (2017) The effect of Tong-Xie-Yao-Fang on intestinal mucosal mast cells in postinfectious irritable bowel syndrome rats. Evid Based Complement Alternat Med 2017:9086034

    PubMed  PubMed Central  Google Scholar 

  • Manes-Lazaro R, Van Diemen PM, Pin C, Mayer MJ, Stevens MP, Narbad A (2017) Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota. Br Poult Sci 58:1–9

    Article  CAS  Google Scholar 

  • Mardini HE, Grigorian AY (2014) Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis 20(9):1562–1567

    Article  PubMed  Google Scholar 

  • Martinez FA, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP (2013) Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 31(4):482–488

    Article  CAS  PubMed  Google Scholar 

  • Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104(2):437–443

    Article  CAS  PubMed  Google Scholar 

  • Nébot-Vivinus M, Harkat C, Bzioueche H, Cartier C, Plichon-Dainese R, Moussa L et al (2014) Multispecies probiotic protects gut barrier function in experimental models. World J Gastroenterol 20(22):6832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishiyama K, Nakazato A, Ueno S, Seto Y, Kakuda T, Takai S et al (2015) Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni. Mol Microbiol 98(4):712–726

    Article  CAS  PubMed  Google Scholar 

  • Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R et al (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A et al (2017) A microbial signature for Crohn’s disease. Gut 66(5):813–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prado Acosta M, Ruzal SM, Cordo SM (2016) S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor. Int J Biol Macromol 92:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Priyamvada S, Gomes R, Gill RK, Saksena S, Alrefai WA, Dudeja PK (2015) Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea. Inflamm Bowel Dis 21(12):2926–2935

    Article  PubMed  PubMed Central  Google Scholar 

  • Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D’Auria G, Martinez-Priego L et al (2016) Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients 8(10):660

    Article  PubMed Central  CAS  Google Scholar 

  • Raheja G, Singh V, Ma K, Boumendjel R, Borthakur A, Gill RK et al (2010) Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 298(3):G395–G401

    Article  CAS  PubMed  Google Scholar 

  • Resta-Lenert S, Barrett KE (2002) Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122(4):1070–1087

    Article  CAS  PubMed  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52(7):988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130(3):731–746

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7(4):e34938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9(2):e89977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rooj AK, Kimura Y, Buddington RK (2010) Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells. BMC Microbiol 10:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell JB, Diez-Gonzalez F (1997) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    Article  Google Scholar 

  • Salari P, Nikfar S, Abdollahi M (2012) A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflamm Allergy Drug Targets 11(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Sang LX, Chang B, Zhang WL, Wu XM, Li XH, Jiang M (2010) Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis. World J Gastroenterol 16(15):1908–1915

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz H, Fromm M, Bentzel CJ, Scholz P, Detjen K, Mankertz J et al (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J cell Sci 112(Pt 1):137–146

    CAS  PubMed  Google Scholar 

  • Schroeder B, Duncker S, Barth S, Bauerfeind R, Gruber AD, Deppenmeier S et al (2006) Preventive effects of the probiotic Escherichia coli strain Nissle 1917 on acute secretory diarrhea in a pig model of intestinal infection. Dig Dis Sci 51(4):724–731

    Article  CAS  PubMed  Google Scholar 

  • Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19(3):282–285

    Article  CAS  PubMed  Google Scholar 

  • Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S et al (2006) slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 281(49):37962–37971

    Article  CAS  PubMed  Google Scholar 

  • Scott KP, Antoine JM, Midtvedt T, van Hemert S (2015) Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 26:25877

    PubMed  Google Scholar 

  • Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–G1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zuo Z-X, Mao A-P (2014) Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm Bowel Dis 20(1):21–35

    Article  PubMed  Google Scholar 

  • Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Raheja G, Borthakur A, Kumar A, Gill RK, Alakkam A et al (2012) Lactobacillus acidophilus upregulates intestinal NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol 303(12):G1393–G1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibault R, De Coppet P, Daly K, Bourreille A, Cuff M, Bonnet C et al (2007) Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology 133(6):1916–1927

    Article  CAS  PubMed  Google Scholar 

  • Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP (2010) Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 16(4):684–695

    Article  PubMed  Google Scholar 

  • Tien MT, Girardin SE, Regnault B, Le Bourhis L, Dillies MA, Coppee JY et al (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176(2):1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Toscano M, De Grandi R, Stronati L, De Vecchi E, Drago L (2017) Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: a preliminary study. World J Gastroenterol 23(15):2696–2704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tytgat HL, Douillard FP, Reunanen J, Rasinkangas P, Hendrickx AP, Laine PK et al (2016) Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: evidence for a novel and heterospecific probiotic mechanism. Appl Environ Microbiol 82(19):5756–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YM, Ge XZ, Wang WQ, Wang T, Cao HL, Wang BL et al (2015) Lactobacillus rhamnosus GG supernatant upregulates serotonin transporter expression in intestinal epithelial cells and mice intestinal tissues. Neurogastroenterol Motil 27(9):1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Yuan L, Deng J, Yang Q (2015) Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol 5:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanfardino A, Criscuolo G, Di Luccia B, Pizzo E, Ciavatta ML, Notomista E et al (2017) Identification of a new small bioactive peptide from Lactobacillus gasseri supernatant. Benefic Microbes 8(1):133–141

    Article  CAS  Google Scholar 

  • Zommiti M, Almohammed H, Ferchichi M (2016) Purification and characterization of a novel anti-campylobacter bacteriocin produced by Lactobacillus curvatus DN317. Probiotics Antimicrob Proteins 8(4):191–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Department of Veterans Affairs Merit Award # BX002011 (P.K. Dudeja), Merit Award # BX000152 (W.A. Alrefai), VA Senior Research Career Scientist Award (P.K. Dudeja), Research Career Scientist Award (W.A. Alrefai), and the NIDDK grants DK54016, DK81858, and DK92441 (P.K. Dudeja) and DK 109709 (W.A. Alrefai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Dudeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Bhat, P., Borthakur, A., Alrefai, W.A., Dudeja, P.K. (2018). Mechanisms Underlying the Beneficial Role of Probiotics in Diarrheal Diseases: Host–Microbe Interactions. In: Sun, J., Dudeja, P. (eds) Mechanisms Underlying Host-Microbiome Interactions in Pathophysiology of Human Diseases. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7534-1_5

Download citation

Publish with us

Policies and ethics