Skip to main content

Transition of Prenatal Prospermatogonia to Postnatal Spermatogonia

  • Chapter
  • First Online:
The Biology of Mammalian Spermatogonia

Abstract

In the mouse, the prospermatogonial phase of male germline development begins during the fetal stages and extends into the neonatal stages when the initial development of spermatogonia then occurs. In the immature testis, undifferentiated spermatogonia are heterogeneous with at least three distinct subpopulations—those spermatogonia that do not self-renew and give rise directly and only to the first spermatogenic wave, those spermatogonia that form spermatogonial stem cells (SSCs) that are capable of undergoing either self-renewal or differentiation such that they can sustain steady-state spermatogenesis throughout the reproductive lifespan of the male, and those spermatogonia that will undergo cell death. The mechanism that regulates which of these fates will be adopted by each developing spermatogonium remains unresolved. However, there is growing evidence that those prospermatogonia that ultimately give rise to SSCs may become predetermined to this fate during the early fetal stages of male germline development, such that these cells follow a unique developmental program that promotes accumulation of characteristics that are particularly advantageous to SSCs. This notion is supported by studies of the maintenance of genetic integrity in developing prospermatogonia and early undifferentiated spermatogonia that do or do not give rise to SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrimson KS, Hogarth CA (2016) Germ cell commitment to oogenic versus spermatogenic pathway: the role of retinoic acid. Results Probl Cell Differ 58:135–166

    Google Scholar 

  • Aloisio GM, Nakada Y, Saatcioglu HD, Pena CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I et al (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124:3929–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370(1):82–96. https://doi.org/10.1111/nyas.13016; Epub 2016 Mar 25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134(19):3401–3411; Epub 2007 Aug 22. Review

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2007) The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. BioEssays 29(10):974–986

    Article  CAS  PubMed  Google Scholar 

  • Busada JT, Chappell VA, Niedenberger BA, Kaye EP, Keiper BD, Hogarth CA, Geyer CB (2015) Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev Biol 397:140–149

    Article  CAS  PubMed  Google Scholar 

  • Busada JT, Geyer CB (2016) The role of retinoic acid (RA) in spermatogonial differentiation. Biol Reprod 94(1):10. https://doi.org/10.1095/biolreprod.115.135145; Epub 2015 Nov 11

    Article  PubMed  Google Scholar 

  • Busada JT, Kaye EP, Renegar RH, Geyer CB (2014) Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse. Biol Reprod 90:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DJ, Walter CA, McCarrey JR (2014) Co-regulation of pluripotency and genetic integrity at the genomic level. Stem Cell Res 13:508–519

    Article  CAS  PubMed  Google Scholar 

  • de Rooij DG (1998) Stem cells in the testis. Int J Exp Pathol 79(2):67–80. Review

    Article  PubMed  Google Scholar 

  • Ebata KT, Zhang X, Nagano MC (2005) Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 72(2):171–181

    Article  CAS  PubMed  Google Scholar 

  • Feng CW, Bowles J, Koopman P (2014) Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol 382:488–497

    Google Scholar 

  • Garcia TX, DeFalco T, Capel B, Hofmann MC (2013) Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol 377:188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia TX, Hofmann MC (2013) NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle 12:2538–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenspan LJ, de Cuevas M, Matunis E (2015) Genetics of gonadal stem cell renewal. Annu Rev Cell Dev Biol 31:291–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisanti L, Falciatori I, Grasso M, Dovere L, Fera S, Muciaccia B, Fuso A, Berno V, Boitani C, Stefanini M, Vicini E (2009) Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27:3043–3052

    CAS  PubMed  Google Scholar 

  • Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR (2014) Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15(2):239–253. https://doi.org/10.1016/j.stem.2014.04.006; Epub May 15

    Article  CAS  PubMed  Google Scholar 

  • Handel MA (1998) Monitoring meiosis in gametogenesis. Theriogenology 49(2):423–430. Review

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP, Mutoji KN, Velte EK, Ko D, Oatley JM, Geyer CB, McCarrey JR (2015) Transcriptional and translational heterogeneity among neonatal mouse spermatogonia. Biol Reprod 92(2):54. https://doi.org/10.1095/biolreprod.114.125757; Epub 2015 Jan 7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296(5576):2181–2183. Review

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Petty CS, Neaves WB (1980) A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod 22(5):1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

    Article  CAS  PubMed  Google Scholar 

  • Kluin PM, de Rooij DG (1981) A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int J Androl 4:475–493

    Article  CAS  PubMed  Google Scholar 

  • Komai Y, Tanaka T, Tokuyama Y, Yanai H, Ohe S, Omachi T, Atsumi N, Yoshida N, Kumano K, Hisha H, Matsuda T, Ueno H (2014) Bmi1 expression in long-term germ stem cells. Sci Rep 4:6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100(11):6487–6492; Epub 2003 May 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71(3):722–731; Epub Apr 28

    Article  CAS  PubMed  Google Scholar 

  • Kurimoto K, Saitou M (2015) Mechanism and reconstitution in vitro of germ cell development in mammals. Cold Spring Harb Symp Quant Biol 80:147–154

    Google Scholar 

  • Manku G, Culty M (2015) Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction 149:R139–R157

    Article  CAS  PubMed  Google Scholar 

  • Manku G, Wang Y, Merkbaoui V, Boisvert A, Ye X, Blonder J, Culty M (2015) Role of retinoic acid and platelet-derived growth factor receptor cross talk in the regulation of neonatal gonocyte and embryonal carcinoma cell differentiation. Endocrinology 156:346–359

    Article  PubMed  Google Scholar 

  • McCarrey JR (2013) Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 89:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehler MF (2002) Mechanisms regulating lineage diversity during mammalian cerebral cortical neurogenesis and gliogenesis. Results Probl Cell Differ 39:27–52

    Article  CAS  PubMed  Google Scholar 

  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22(1–2):74–85

    Article  CAS  PubMed  Google Scholar 

  • Mori C, Nakamura N, Dix DJ, Fujioka M, Nakagawa S, Shiota K, Eddy EM (1997) Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn 208:125–136

    Article  CAS  PubMed  Google Scholar 

  • Morimoto H, Kanatsu-Shinohara M, Takashima S, Chuma S, Nakatsuji N, Takehashi M, Shinohara T (2009) Phenotypic plasticity of mouse spermatogonial stem cells. PLoS One 4:e7909

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Mortelmans K, Riccio ES (2000) The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res 455(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  • Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR (2013) Enhanced genetic integrity in mouse germ cells. Biol Reprod 88(1):6. https://doi.org/10.1095/biolreprod.112.103481

    Article  PubMed  Google Scholar 

  • Murphey P, Yamazaki Y, McMahan CA, Walter CA, Yanagimachi R, McCarrey JR (2009) Epigenetic regulation of genetic integrity is reprogrammed during cloning. Proc Natl Acad Sci U S A 106:4731–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69:701–707

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedenberger BA, Busada JT, Geyer CB (2015) Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis. Reproduction 149:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley MJ, Kaucher AV, Racicot KE, Oatley JM (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmura M, Yoshida S, Ide Y, Nagamatsu G, Suda T, Ohbo K (2004) Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch Histol Cytol 67(4):285–296

    Article  CAS  PubMed  Google Scholar 

  • Orwig KE, Ryu BY, Avarbock MR, Brinster RL (2002) Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc Natl Acad Sci U S A 99(18):11706–11711; Epub 2002 Aug 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reik W, Surani MA (2015) Germline and pluripotent stem cells. Cold Spring Harb Perspect Biol 7(11). https://doi.org/10.1101/cshperspect.a019422

  • Rotgers E, Nurmio M, Pietilä E, Cisneros-Montalvo S, Toppari J (2015) E2F1 controls germ cell apoptosis during the first wave of spermatogenesis. Andrology 3(5):1000–1014. https://doi.org/10.1111/andr.12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (2000) Functional analysis of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev Biol 220:401–411

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Ishii K, Kanatsu-Shinohara M (2011) Unstable side population phenotype of mouse spermatogonial stem cells in vitro. J Reprod Dev 57:288–295

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Sada A, Yoshida S, Saga Y (2009) The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Dev Biol 336:222–231

    Article  CAS  PubMed  Google Scholar 

  • Walter CA, Intano GW, McCarrey JR, McMahan CA, Walter RB (1998) Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci U S A 95:10015–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Luo H, Wang H (2013) Germline stem cells. Curr Top Dev Biol 102:97–126

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Nabeshima Y, Nakagawa T (2007) Stem cell heterogeneity: actual and potential stem cell compartments in mouse spermatogenesis. Ann N Y Acad Sci 1120:47–58

    Article  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, Nabeshima Y (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Wu X, Kaestner KH, Wang PJ (2009) The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9:38

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to Drs. Brian Hermann, Jon Oatley, and Christopher Geyer for valuable discussions. JRM is the Kleberg Distinguished University Chair in Cellular and Molecular Biology at the University of Texas at San Antonio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. McCarrey Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCarrey, J.R. (2017). Transition of Prenatal Prospermatogonia to Postnatal Spermatogonia. In: Oatley, J., Griswold, M. (eds) The Biology of Mammalian Spermatogonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7505-1_2

Download citation

Publish with us

Policies and ethics