Skip to main content

The Degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\)

  • Chapter
  • First Online:

Part of the book series: Fields Institute Communications ((FIC,volume 80))

Abstract

We provide a closed formula for the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\). In addition, we test symbolic and numerical techniques for computing the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\). As an application of our results, we give a formula for the number of critical points of a low-rank semidefinite programming problem. Finally, we provide evidence for a conjecture regarding the real locus of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin Aigner and Günter Ziegler: Proofs from The Book, Fourth edition, Springer-Verlag, Berlin, 2010.

    Google Scholar 

  2. Hans-Christian Graf von Bothmer and Kristian Ranestad: A general formula for the algebraic degree in semidefinite programming, Bull. Lond. Math. Soc. 41 (2009) 193–197.

    Google Scholar 

  3. Stephen Boyd and Lieven Vandenberghe: Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization, in Communications, Computation, Control, and Signal Processing, 279–287, Springer Science+Business Media, New York, 1997.

    Google Scholar 

  4. Taylor Brysiewicz: Experimenting to find many real points on slices of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\), www.math.tamu.edu/~tbrysiewicz/realitySonData.html.

  5. Samuel Burer and Renato Monteiro: Local minima and convergence in low-rank semidefinite programming, Math. Program. Ser. A 103 (2005) 427–444.

    Google Scholar 

  6. Harm Derksen and Gregor Kemper: Computational invariant theory, Encyclopaedia of Mathematical Sciences 130, Springer, Heidelberg, 2015.

    Google Scholar 

  7. Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee, Anton Leykin, and Jeff Sommars: Solving polynomial systems via homotopy continuation and monodromy, arXiv:1609.08722 [math.AG].

    Google Scholar 

  8. William Fulton and Joe Harris: Representation theory, Graduate Texts in Mathematics 129, Springer-Verlag, New York, 1991.

    Google Scholar 

  9. Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.

  10. Ira Gessel and Gérard Viennot: Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985) 300–321.

    Google Scholar 

  11. Michel X. Goemans and David P. Williamson: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach. 42 (1995) 1115–1145.

    Google Scholar 

  12. Jonathan D. Hauenstein and Frank Sottile: alphaCertified software for certifying numerical solutions to polynomial equations, available at www.math.tamu.edu/~sottile/research/stories/alphaCertified.

  13. James E. Humphreys: Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  14. B. Ya. Kazarnovskiĭ: Newton polyhedra and Bézout’s formula for matrix functions of finite-dimensional representations, Functional Anal. Appl. 21 (1987) 319–321.

    Google Scholar 

  15. James S. Milne: Algebraic number theory, v3.06, 2014, available at www.jmilne.org/math/CourseNotes/ant.html.

  16. Jiawang Nie, Kristian Ranestad, and Bernd Sturmfels: The algebraic degree of semidefinite programming, Math. Program. Ser. A 122 (2010) 379–405.

    Google Scholar 

  17. Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler: Symmetric functions applied to decomposing solution sets of polynomial systems, SIAM J. Numer. Anal. 40 (2002) 2026–2046.

    Google Scholar 

  18. Andrew J. Sommese and Charles W. Wampler: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.

    Google Scholar 

  19. Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geometry,1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

Download references

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. The authors are very grateful to Jan Draisma for his tremendous help with understanding the Kazarnovskij Formula and to Kristian Ranestad for many helpful discussions. The authors thank Anton Leykin for performing the computation of \(\mathop{\mathrm{SO}}\nolimits (7, \mathbb{C})\). The first three authors would also like to thank the Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany for their hospitality where some of this article was completed. The motivation for computing the degree of the orthogonal group came from project that started by the fifth author at the suggestion of Benjamin Recht. The first author was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1106400, and the second author was partially supported by the NSF GRFP under Grant No. DGE-1256259 and the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Krone .

Editor information

Editors and Affiliations

Appendix: Macaulay2 Code

Appendix: Macaulay2 Code

This section contains Macaulay2 [9] code for computing the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\). We typically compute the degree of \(\mathop{\mathrm{O}}\nolimits (n, \mathbb{C})\), and divide by to 2 to obtain the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\), because this approach eliminates the polynomial of highest degree, the condition that the determinant equal 1.

First, we compute the degree of \(\mathop{\mathrm{SO}}\nolimits (5)\) using Gröbner bases . The computation is done over the finite field \(\mathbb{Z}/2\mathbb{Z}\) for \(\mathop{\mathrm{O}}\nolimits (5, \mathbb{C})\) and the result is halved to give the degree of \(\mathop{\mathrm{SO}}\nolimits (5, \mathbb{C})\).

deg1SO = n -> (     R := ZZ/2[x_(1,1)..x_(n,n)];     M := genericMatrix(R,n,n);     J := minors(1, M * transpose(M) - id_(R^n));     (degree J) // 2)

Our second function uses the package NumericalAlgebraicGeometry to solve the zero-dimensional system arising from a linear slice of the variety \(\mathop{\mathrm{O}}\nolimits (3, \mathbb{C})\). The command solveSystem employs the standard method of polynomial homotopy continuation.

needsPackage ‘‘NumericalAlgebraicGeometry’’; deg2SO = n -> (     R := CC[x_(1,1)..x_(n,n)];     M := genericMatrix(R,n,n);     B := M * transpose(M) - id_(R^n);     polys := unique flatten entries B;     linearSlice := apply(binomial(n,2),         i -> random(1,R) - random(CC));     S := solveSystem(polys | linearSlice);     #S // 2)

We next provide code that computes the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\) using the package MonodromySolver. Again we do not include the determinant condition, but this time we do not need to halve the result. This is because our starting point, the identity matrix, lies on \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\) and this method only discovers points on the irreducible component corresponding to our starting point. The linear slices are parametrized by the t and c variables which are varied within the function monodromySolve to create monodromy loops. The method stops when ten consecutive loops provide no new points. Although it is possible that this stopping criterion is satisfied prematurely, in our case the program stopped at the correct number.

needsPackage ‘‘MonodromySolver’’; deg3SO = n -> (     d := binomial(n,2);     R := CC[c_1..c_d,         t_(1,1,1)..t_(d,n,n)][x_(1,1)..x_(n,n)];     M := genericMatrix(R,n,n);     B := M * transpose(M) - id_(R^n);     polys := unique flatten entries B;     linearSlice := for i from 1 to d list (         c_i + sum flatten for j from 1 to n list (     for k from 1 to N list t_(i,j,k)*x_(j,k)));     G := polySystem( polys | linearSlice);     setRandomSeed 0;     (p0, x0) := createSeedPair(G,         flatten entries id_(CC^n));     (V, npaths) = monodromySolve(G, p0, {x_0},         NumberOfNodes => 2, NumberOfEdges => 4);     # flatten points V.PartialSols)

Finally, we may use Theorem 1.1 to compute the degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\).

deg4SO = n -> (     r := n // 2;     M := matrix table(toList(1..r), toList(1..r),         (i,j) -> binomial(2*n-2*i-2*j, n-2*i));     2^(n-1) * det(M))

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brandt, M., Bruce, J., Brysiewicz, T., Krone, R., Robeva, E. (2017). The Degree of \(\mathop{\mathrm{SO}}\nolimits (n, \mathbb{C})\) . In: Smith, G., Sturmfels, B. (eds) Combinatorial Algebraic Geometry. Fields Institute Communications, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7486-3_11

Download citation

Publish with us

Policies and ethics