Skip to main content

Fitness, Apprenticeship, and Polynomials

  • Chapter
  • First Online:
Combinatorial Algebraic Geometry

Part of the book series: Fields Institute Communications ((FIC,volume 80))

Abstract

This article discusses the design of the Apprenticeship Program at the Fields Institute, held 21 August–3 September 2016. Six themes from combinatorial algebraic geometry were selected for the 2 weeks: curves, surfaces, Grassmannians, convexity, abelian combinatorics, parameters and moduli. The activities were structured into fitness, research and scholarship. Combinatorics and concrete computations with polynomials (and theta functions) empowers young scholars in algebraic geometry, and it helps them to connect with the historic roots of their field. We illustrate our perspective for the threefold obtained by blowing up six points in \(\mathbb{P}^{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbara Bolognese, Madeline Brandt, and Lynn Chua: From curves to tropical Jacobians and back, in Combinatorial Algebraic Geometry, 21–45, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  2. Corey Harris and Yoav Len: Tritangent planes to space sextics: the algebraic and tropical stories, in Combinatorial Algebraic Geometry, 47–63, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  3. Melody Chan and Pakawut Jiradilok: Theta characteristics of tropical K 4-curves, in Combinatorial Algebraic Geometry, 65–86, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  4. Kathlén Kohn, Bernt Ivar Utstøl Nødland, and Paolo Tripoli: Secants, bitangents, and their congruences, in Combinatorial Algebraic Geometry, 87–112, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  5. Leonid Monin and Julie Rana: Equations of \(\overline{M}_{0,n}\), in Combinatorial Algebraic Geometry, 113–132, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  6. Netanel Friedenberg, Alessandro Oneto, and Robert Williams: Minkowski sums and Hadamard products of algebraic varieties, in Combinatorial Algebraic Geometry, 133–157, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  7. Martha Bernal Guillén, Daniel Corey, Maria Donton-Bury, Naoki Fujita, and Georg Merz: Khovanskii bases of Cox-Nagata rings and tropical geometry, in Combinatorial Algebraic Geometry, 159–179, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  8. Barbara Bolognese, Corey Harris, and Joachim Jelisiejew: Equations and tropicalization of Enriques surfaces, in Combinatorial Algebraic Geometry, 181–200, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  9. John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska: Specht polytopes and Specht matroids, in Combinatorial Algebraic Geometry, 201–228, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  10. Madeline Brandt, Juliette Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva: The degree of \(\mathop{\mathrm{SO}}\nolimits (n)\), in Combinatorial Algebraic Geometry, 229–246, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  11. Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi: Computing toric degenerations of flag varieties, in Combinatorial Algebraic Geometry, 247–281, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  12. Laura Escobar and Allen Knutson: The multidegree of the multi-image variety, in Combinatorial Algebraic Geometry, 283–296, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  13. Evan D. Nash, Ata Firat Pir, Frank Sottile, and Li Ying: The convex hull of two circles in \(\mathbb{R}^{3}\), in Combinatorial Algebraic Geometry, 297–319, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  14. Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler: The Hilbert scheme of 11 points in \(\mathbb{A}^{3}\) is irreducible, in Combinatorial Algebraic Geometry, 321–352, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  15. Bo Lin and Martin Ulirsch: Towards a tropical Hodge bundle, in Combinatorial Algebraic Geometry, 353–369, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  16. Lars Kastner, Kristin Shaw, and Anna-Lena Winz: Computing sheaf cohomology in Polymake, in Combinatorial Algebraic Geometry, 369–385, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  17. Karim Adiprasito and Raman Sanyal: Relative Stanley–Reisner theory and Upper Bound Theorems for Minkowski sums, Publ. Math. Inst. Hautes Études Sci. 124 (2016) 99–163.

    Google Scholar 

  18. Valery Alexeev: Moduli of weighted hyperplane arrangements, in Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser/Springer, Basel, 2015

    Google Scholar 

  19. Vladimir I. Arnold: A-graded algebras and continued fractions, Comm. Pure Appl. Math. 42 (1989) 993–1000.

    Google Scholar 

  20. Alexander Barvinok: A Course in Convexity, Graduate Studies in Mathematics 54. American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  21. Dori Bejleri and Gjergji Zaimi: The topology of equivariant Hilbert schemes, arXiv:1512.05774 [math.AG].

    Google Scholar 

  22. Dustin Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray: Hilbert schemes of 8 points, Algebra Number Theory 3 (2009) 763–795.

    Google Scholar 

  23. Ana-Maria Castravet and Jenia Tevelev: Hilbert’s 14th problem and Cox rings, Compos. Math. 142 (2006) 1479–1498.

    Google Scholar 

  24. Wouter Castryck and John Voight: On nondegeneracy of curves, Algebra Number Theory 6 (2012) 1133–1169.

    Google Scholar 

  25. Ciro Ciliberto: On the degree of genus of smooth curves in a projective space, Adv. Math. 81 (1990) 198–248.

    Google Scholar 

  26. Bernard Deconinck and Mark van Hoeij: Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001) 28–46.

    Google Scholar 

  27. David Eisenbud and Joe Harris: On varieties of minimal degree (a centennial account), in Algebraic geometry, Bowdoin, 1985, 3–13, Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence, RI, 1987.

    Google Scholar 

  28. Günter Ewald: Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics 168, Springer-Verlag, New York, 1996

    Google Scholar 

  29. Tom Fisher: Pfaffian presentations of elliptic normal curves, Trans. Amer. Math. Soc. 362 (2010) 2525–2540.

    Google Scholar 

  30. Jörg Gretenkort, Peter Kleinschmidt, and Bernd Sturmfels: On the existence of certain smooth toric varieties, Discrete Comput. Geom. 5 (1990) 255–262.

    Google Scholar 

  31. Tawanda Gwena: Degenerations of cubic threefolds and matroids, Proc. Amer. Math. Soc. 133 (2005) 1317–1323.

    Google Scholar 

  32. Paul Helminck: Tropical Igusa invariants and torsion embeddings,arXiv:1604.03987 [math.AG].

    Google Scholar 

  33. Milena Hering and Diane Maclagan: The T-graph of a multigraded Hilbert scheme, Exp. Math. 21 (2012) 280–297.

    Google Scholar 

  34. Ronold W.H. Hudson: Kummer’s Quartic Surface, Cambridge University Press, 1905.

    Google Scholar 

  35. Manelaos Karavelas, Christos Konaxis and Eleni Tzanaki: The maximum number of faces of the Minkowski sum of three convex polytopes, J. Comput. Geom. 6 (2015) 21–74.

    Google Scholar 

  36. Kiumars Kaveh and Christopher Manon: Khovanskii bases, Newton–Okounkov polytopes and tropical geometry of projective varieties, arXiv:1610.00298 [math.AG].

    Google Scholar 

  37. Maximilian Kreuzer and Harald Skarke: Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2000) 1209–1230.

    Google Scholar 

  38. Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in Mathematics 161, American Mathematical Society, Providence, RI, 2015.

    Google Scholar 

  39. Christopher Manon: The algebra of \(\mathop{\mathrm{SL}}\nolimits _{3}(\mathbb{C})\) conformal blocks, Transform. Groups 4 (2013) 1165–1187.

    Google Scholar 

  40. Ezra Miller and Bernd Sturmfels: Combinatorial Commutative Algebra, Graduate Texts in Mathematics 227, Springer-Verlag, New York, 2004.

    Google Scholar 

  41. David Mumford, John Fogarty, and Frances Kirwan: Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer, Berlin, 1994.

    Google Scholar 

  42. Irena Peeva and Mike Stillman: Toric Hilbert schemes, Duke Math. J. 111 (2002) 419–449.

    Google Scholar 

  43. Motakuri Ramana and Alan Goldman: Some geometric results in semidefinite programming, J. Global Optim. 7 (1995) 33–50.

    Google Scholar 

  44. Emanuel Reinecke: Moduli Space of Cubic Surfaces, Bachelorarbeit Mathematik, Universität Bonn, July 2012.

    Google Scholar 

  45. Qingchun Ren, Steven Sam, and Bernd Sturmfels: Tropicalization of classical moduli spaces, Math. Comput. Sci. 8 (2014) 119–145.

    Google Scholar 

  46. Qingchun Ren, Steven Sam, Gus Schrader, and Bernd Sturmfels: The universal Kummer threefold, Exp. Math. 22 (2013) 327–362.

    Google Scholar 

  47. Qingchun Ren, Kristin Shaw, and Bernd Sturmfels: Tropicalization of Del Pezzo surfaces, Adv. Math. 300 (2016) 156–189.

    Google Scholar 

  48. James Ruffo: Quasimaps, straightening laws, and quantum cohomology for the Lagrangian Grassmannian, Algebra Number Theory 2 (2008) 819–858.

    Google Scholar 

  49. Raman Sanyal, Frank Sottile, and Bernd Sturmfels: Orbitopes, Mathematika 57 (2011) 275–314.

    Google Scholar 

  50. Frank-Olaf Schreyer: Computer aided unirationality proofs of moduli spaces, in Handbook of moduli. Vol. III, 257–280, Adv. Lect. Math. 26, Int. Press, Somerville, MA, 2013.

    Google Scholar 

  51. Joshua Scott: Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006) 345–380.

    Google Scholar 

  52. Frank Sottile: Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Exp. Math. 9 (2000) 161–182.

    Google Scholar 

  53. Reinhard Steffens and Thorsten Theobald: Combinatorics and genus of tropical intersections and Ehrhart theory, SIAM J. Discrete Math. 24 (2010) 17–32.

    Google Scholar 

  54. Bernd Sturmfels: Gröbner Bases and Convex Polytopes, University Lecture Series 8. American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  55. Bernd Sturmfels: Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000) 282–294.

    Google Scholar 

  56. Bernd Sturmfels: Solving Systems of Polynomial Equations, CBMS Regional Conference Series in Mathematics 97, American Mathematical Society, Providence, RI, 2002

    Google Scholar 

  57. Bernd Sturmfels: The Hurwitz form of a projective variety, J. Symbolic Comput. 79 (2017) 186–196.

    Google Scholar 

  58. Bernd Sturmfels and Seth Sullivant: Toric ideals of phylogenetic invariants, J. Comput. Biol. 12 (2005) 204–228.

    Google Scholar 

  59. Bernd Sturmfels and Mauricio Velasco: Blow-ups of \(\mathbb{P}^{n-3}\) at n points and spinor varieties, J. Commut. Algebra 2 (2010) 223–244.

    Google Scholar 

  60. Bernd Sturmfels and Zhiqiang Xu: Sagbi bases of Cox–Nagata rings, J. Eur. Math. Soc. (JEMS) 12 (2010) 429–459.

    Google Scholar 

  61. Christopher Swierczewski and Bernard Deconinck: Riemann theta functions in Sage with applications, Math. Comput. Simulation 127 (2016) 263–272.

    Google Scholar 

  62. Qiaochu Yuan: Explicit equations in the plane for elliptic curves as space quartics, for the Intel Talent Search 2008, available at math.berkeley.edu/ ∼ qchu/Intel.pdf.

  63. Jakub Witaszek: The degeneration of the Grassmannian into a toric variety and the calculation of the eigenspaces of a torus action, J. Algebr. Stat. 6 (2015) 62–79.

    Google Scholar 

Download references

Acknowledgements

This article benefited greatly from comments by Lara Bossinger, Fatemeh Mohammadi, Emre Sertöz, Mauricio Velasco, and an anonymous referee. The apprenticeship program at the Fields Institute was supported by the Clay Mathematics Institute. The author also acknowledges partial support from the Einstein Foundation Berlin, MPI Leipzig, and the US National Science Foundation (DMS-1419018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Sturmfels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sturmfels, B. (2017). Fitness, Apprenticeship, and Polynomials. In: Smith, G., Sturmfels, B. (eds) Combinatorial Algebraic Geometry. Fields Institute Communications, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7486-3_1

Download citation

Publish with us

Policies and ethics