Skip to main content

A Role for the Cerebellum in Language and Related Cognitive and Affective Functions

  • Chapter
  • First Online:
Neural Mechanisms of Language

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

At the beginning of the twentieth century, several authors defined the role of the cerebellum as a modulator of motor functions including diadochokinesia, tonus, coordination, and motor speech production (Babinski 1902; Luciani 1891; Holmes 1922). Although from time to time clinical case descriptions and experimental evidence from animal studies dating back to the early part of the nineteenth century suggested an association between cerebellar pathology and a variety of nonmotor cognitive and affective dysfunctions, a causal relationship remained unexplored and was dismissed for several decades. During the past three decades converging evidence from a wealth of neuroanatomical, neuroimaging, and clinical studies has unambiguously demonstrated that the cerebellum is also involved in cognitive, affective and linguistic processing. Neuroanatomical studies revealed that the cerebellum is closely linked in a reciprocal way to the autonomic, limbic, and associative regions of the supratentorial cortex (for a review, see Schmahmann 2004). In addition, cortical areas send information to the cerebellum via the basilar pons (Schmahmann and Pandyat 1997), and deep cerebellar nuclei send information back to the cortical association areas through dentatothalamic pathways (Middleton and Strick 1997) (Fig. 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Refers to all of the cerebral cortex lying above and anterior to the tentorium cerebelli. It is that part of the dura that ‘tents’ the cerebellum on its superior surface separating it from the inferior occipital cortex.

  2. 2.

    Diaschisis, a concept introduced at the beginning of the twentieth century by Constantin Von Monakow, stands for the distant functional impact of a brain lesion on an anatomically connected and structurally intact brain region. Depressed function of this intact region is considered to result from a decrease or loss of excitatory impulses from the anatomically connected, lesioned area.

References

  • Aarsen, F. K., Van Dongen, H., Paquier, P., Van Mourik, M., & Catsman-Berrevoets, C. E. (2004). Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology, 62, 1311–1316.

    Article  PubMed  Google Scholar 

  • Alexander, M. P., Gillingham, S., Schweizer, T., & Stuss, D. T. (2012). Cognitive impairments due to focal cerebellar injuries in adults. Cortex, 48, 980–990.

    Article  PubMed  Google Scholar 

  • Arasanz, C. P., Staines, W. R., Roy, E. A., & Schweizer, T. A. (2012). The cerebellum and its role in word generation: A cTBS study. Cortex, 48, 718–724.

    Article  PubMed  Google Scholar 

  • Ardila, A., & Surloff, C. (2006). Dysexecutive agraphia: A major executive dysfunction sign. International Journal of Neuroscience, 116, 653–663.

    Article  PubMed  Google Scholar 

  • Babinski, J. (1902). Sur le role du cervelet dans les actes volitionnels necessitant une succession rapide de mouvements (1)(Diadocoeinesie). Paris: Masson.

    Google Scholar 

  • Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study. Cortex, 46, 869–879.

    Article  PubMed  Google Scholar 

  • Baillieux, H., De Smet, H. J., Lesage, G., Paquier, P., De Deyn, P. P., & Mariën, P. (2006). Neurobehavioral alterations in an adolescent following posterior fossa tumor resection. The Cerebellum, 5, 289–295.

    Article  PubMed  Google Scholar 

  • Baillieux, H., Vandervliet, E. J., Manto, M., Parizel, P. M., De Deyn, P. P., & Mariën, P. (2009). Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain and Language, 108, 122–132.

    Article  PubMed  Google Scholar 

  • Baron, J., Bousser, M., Comar, D., Soussaline, F., & Castaigne, P. (1981). Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. European Neurology, 20, 273–284.

    Article  PubMed  Google Scholar 

  • Beaton, A., & Mariën, P. (2010). Language, cognition and the cerebellum: Grappling with an enigma. Cortex, 46, 811–820.

    Article  PubMed  Google Scholar 

  • Beeson, P., Rapcsak, S., Plante, E., Chargualaf, J., Chung, A., Johnson, S., et al. (2003). The neural substrates of writing: A functional magnetic resonance imaging study. Aphasiology, 17, 647–665.

    Google Scholar 

  • Bellebaum, C., & Daum, I. (2011). Mechanisms of cerebellar involvement in associative learning. Cortex, 47, 128–136.

    Article  PubMed  Google Scholar 

  • Blancart, R. G., Escrig, M. G., & Gimeno, A. N. (2011). Aphasia secondary to left cerebellar infarction. Neurología (English Edition), 26, 56–58.

    Article  Google Scholar 

  • Botez-Marquard, T., Léveillé, J., & Botez, M. (1994). Neuropsychological functioning in unilateral cerebellar damage. Canadian Journal of Neurological Sciences, 21, 353–357.

    Article  PubMed  Google Scholar 

  • Brown, W., Eliez, S., Menon, V., Rumsey, J., White, C., & Reiss, A. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56, 781–783.

    Article  PubMed  Google Scholar 

  • Catsman-Berrevoets, C. E., & Aarsen, F. K. (2010). The spectrum of neurobehavioural deficits in the Posterior Fossa Syndrome in children after cerebellar tumour surgery. Cortex, 46, 933–946.

    Article  PubMed  Google Scholar 

  • Chheda, M., Sherman, J., & Schmahmann, J. (2002). Neurologic, psychiatric, and cognitive manifestations in cerebellar agenesis. In Neurology (Vol. 7, p. A356). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Cook, M., Murdoch, B., Cahill, L., & Whelan, B. M. (2004). Higher-level language deficits resulting from left primary cerebellar lesions. Aphasiology, 18, 771–784.

    Article  Google Scholar 

  • Copland, D. A., Chenery, H. J., & Murdoch, B. E. (2000). Persistent deficits in complex language function following dominant nonthalamic subcortical lesions. Journal of Medical Speech-Language Pathology, 14, 379–390.

    Google Scholar 

  • De Smet, H. J., Catsman-Berrevoets, C., Aarsen, F., Verhoeven, J., Marien, P., & Paquier, P. F. (2012). Auditoryperceptual speech analysis in children with cerebellar tumours: A long-term follow-up study. European Journal of Paediatric Neurology, 16, 434–442.

    Google Scholar 

  • De Smet, H. J., & Mariën, P. (2012). Posterior fossa syndrome in an adult patient following surgical evacuation of an intracerebellar haematoma. The Cerebellum, 11, 587–592.

    Article  PubMed  Google Scholar 

  • De Smet, H. J., Paquier, P. F., Verhoeven, J., & Mariën, P. (2013). The cerebellum: its role in language and related cognitive and affective functions, Brain and Language, 127, 334-342.

    Google Scholar 

  • Desmond, J. E. (2001). Cerebellar involvement in cognitive function: Evidence from neuroimaging. International Review of Psychiatry, 13, 283–294.

    Article  Google Scholar 

  • Desmond, J. E., Gabrieli, J. D., Wagner, A. D., Ginier, B. L., & Glover, G. H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. Journal of Neuroscience, 17, 9675–9685.

    PubMed  Google Scholar 

  • Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.

    Article  PubMed  Google Scholar 

  • Eckert, M. A., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126, 482–494.

    Article  PubMed  Google Scholar 

  • Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63, 2132–2135.

    Article  PubMed  Google Scholar 

  • Fabbro, F., Moretti, R., & Bava, A. (2000). Language impairments in patients with cerebellar lesions. Journal of Neurolinguistics, 13, 173–188.

    Article  Google Scholar 

  • Fabbro, F., Tavano, A., Corti, S., Bresolin, N., De Fabritiis, P., & Borgatti, R. (2004). Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia, 42, 536–545.

    Article  PubMed  Google Scholar 

  • Fawcett, A. J., & Nicolson, R. I. (1999). Performance of dyslexic children on cerebellar and cognitive tests. Journal of Motor Behavior, 31, 68–78.

    Article  PubMed  Google Scholar 

  • Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired non-motor learning and error detection associated with cerebellar damage. Brain, 115, 155–178.

    Article  PubMed  Google Scholar 

  • Finch, A. J., Nicolson, R. I., & Fawcett, A. J. (2002). Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex, 38, 529–539.

    Article  PubMed  Google Scholar 

  • Gasparini, M., Piero, V. D., Ciccarelli, O., Cacioppo, M. M., Pantano, P., & Lenzi, G. L. (1999). Linguistic impairment after right cerebellar stroke: A case report. European Journal of Neurology, 6, 353–356.

    Article  PubMed  Google Scholar 

  • Gottwald, B., Wilde, B., Mihajlovic, Z., & Mehdorn, H. (2004). Evidence for distinct cognitive deficits after focal cerebellar lesions. Journal of Neurology, Neurosurgery & Psychiatry, 75, 1524–1531.

    Article  Google Scholar 

  • Gourovitch, M. L., Kirkby, B. S., Goldberg, T. E., Weinberger, D. R., Gold, J. M., Esposito, G., et al. (2000). A comparison of rCBF patterns during letter and semantic fluency. Neuropsychology, 14, 353.

    Article  PubMed  Google Scholar 

  • Grabowski, T. J., Frank, R., Brown, C., Damasio, H., Ponto, L., Watkins, G., et al. (1996). Reliability of PET activation across statistical methods, subject groups, and sample sizes. Human Brain Mapping, 4, 23–46.

    Google Scholar 

  • Hassid, E. I. (1995). A case of language dysfunction associated with cerebellar infarction. Journal of Neurologic Rehabilitation, 9, 157–160.

    Google Scholar 

  • Heilman, K. M., Coyle, J. M., Gonyea, F., & Geschwind, N. (1973). Apraxia and agraphia in a left-hander. Brain: A Journal of Neurology, 96, 21–28.

    Article  Google Scholar 

  • Hetherington, R., Dennis, M., & Spiegler, B. (2000). Perception and estimation of time in long-term survi`s of childhood posterior fossa tumors. Journal of the International Neuropsychological Society, 6, 682–692.

    Article  PubMed  Google Scholar 

  • Holmes, G. (1922). Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures I. Lancet, 1, 177–1182.

    Google Scholar 

  • Hubrich-Ungureanu, P., Kaemmerer, N., Henn, F. A., & Braus, D. F. (2002). Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 319, 91–94.

    Article  PubMed  Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Diener, H. (1991). Impaired velocity perception in patients with lesions of the cerebellum. Journal of Cognitive Neuroscience, 3, 355–366.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Richardson, T. C. (2002). Temporal control and coordination: The multiple timer model. Brain and Cognition, 48, 117–132.

    Article  PubMed  Google Scholar 

  • Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13, 34–42.

    Article  PubMed  Google Scholar 

  • Kempler, D., VanLancker, D., Marchman, V., & Bates, E. (1999). Idiom comprehension in children and adults with unilateral brain damage. Developmental Neuropsychology, 15, 327–349.

    Article  Google Scholar 

  • Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (2011). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex, 47(1), 137–144.

    Google Scholar 

  • Leggio, M., Neri, P., Graziano, A., Mandolesi, L., Molinari, M., & Petrosini, L. (1999). Cerebellar contribution to spatial event processing: Characterization of procedural learning. Experimental Brain Research, 127, 1–11.

    Article  PubMed  Google Scholar 

  • Leggio, M. G., Silveri, M. C., Petrosini, L., & Molinari, M. (2000). Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. Journal of Neurology, Neurosurgery & Psychiatry, 69, 102–106.

    Article  Google Scholar 

  • Leggio, M., Solida, A., Silveri, M., Gainotti, G., & Molinari, M. (1995). Verbal fluency impairments in patients with cerebellar lesions. In Society for neuroscience abstracts (Vol. 364.6).

    Google Scholar 

  • Leggio, M., Tedesco, A., Chiricozzi, F., Clausi, S., Orsini, A., & Molinari, M. (2008). Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain, 131, 1332–1343.

    Article  PubMed  Google Scholar 

  • Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.

    Article  PubMed  Google Scholar 

  • Longcamp, M., Anton, J.-L., Roth, M., & Velay, J.-L. (2003). Visual presentation of single letters activates a premotor area involved in writing. Neuroimage, 19, 1492–1500.

    Article  PubMed  Google Scholar 

  • Luciani, L. (1891). Il cervelletto: Nuovi studi di fisiologia normale e patologica. Coi tipi dei successori Le Monnier. Firenze: Le Monnier.

    Google Scholar 

  • Manni, E., & Petrosini, L. (2004). A century of cerebellar somatotopy: A debated representation. Nature Reviews Neuroscience, 5, 241–249.

    Article  PubMed  Google Scholar 

  • Manto, M., & Mariën, P. (2015). Schmahmann’s syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum & Ataxias, 2(1). http://doi.org/10.1186/s40673-015-0023-1

  • Mariën, P., Baillieux, H., De Smet, H. J., Engelborghs, S., Wilssens, I., Paquier, P., et al. (2009). Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: A case study. Cortex, 45, 527–536.

    Google Scholar 

  • Mariën, P., Brouns, R., Engelborghs, S., Wackenier, P., Verhoeven, J., Ceulemans, B., et al. (2008). Cerebellar cognitive affective syndrome without global mental retardation in two relatives with Gillespie syndrome. Cortex, 44, 54–67.

    Google Scholar 

  • Mariën, P., de Smet, E., de Smet, H. J., Wackenier, P., Dobbeleir, A., & Verhoeven, J. (2013a). “Apraxic dysgraphia” in a 15-year-old left-handed patient: Disruption of the cerebello-cerebral network involved in the planning and execution of graphomotor movements. The Cerebellum, 12, 131–139.

    Article  PubMed  Google Scholar 

  • Mariën, P., De Smet, H. J., Wijgerde, E., Verhoeven, J., Crols, R., & De Deyn, P. P. (2013b). Posterior fossa syndrome in adults: A new case and comprehensive survey of the literature. Cortex, 49, 284–300.

    Article  PubMed  Google Scholar 

  • Mariën, P., Engelborghs, S., Fabbro, F., & De Deyn, P. P. (2001). The lateralized linguistic cerebellum: A review and a new hypothesis. Brain and Language, 79, 580–600.

    Google Scholar 

  • Mariën, P., Engelborghs, S., Pickut, B. A., & De Deyn, P. P. (2000). Aphasia following cerebellar damage: Fact or fallacy? Journal of Neurolinguistics, 13, 145–171.

    Google Scholar 

  • Mariën, P., Michiels, E., & De Deyn, P. P. (2003). Cognitive and linguistic disturbances in the posterior fossa syndrome in children: A diaschisis phenomenon? Brain and Language, 87, 162.

    Google Scholar 

  • Mariën, P., Saerens, J., Nanhoe, R., Moens, E., Nagels, G., Pickut, B. A., et al. (1996). Cerebellar induced aphasia: Case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. Journal of the Neurological Sciences, 144, 34–43.

    Article  PubMed  Google Scholar 

  • Mariën, P., Verhoeven, J., Brouns, R., De Witte, L., Dobbeleir, A., & De Deyn, P. (2007). Apraxic agraphia following a right cerebellar hemorrhage. Neurology, 69, 926–929.

    Article  PubMed  Google Scholar 

  • Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270, 102.

    Article  PubMed  Google Scholar 

  • Marvel, C. L., & Desmond, J. E. (2010). The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex, 46, 880–895.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1997). Cerebellar output channels. International Review of Neurobiology, 41, 61–82.

    Article  PubMed  Google Scholar 

  • Miller, N., Reddick, W. E., Kocak, M., Glass, J. O., Löbel, U., Morris, B., et al. (2010). Cerebellocerebral diaschisis is the likely mechanism of postsurgical posterior fossa syndrome in pediatric patients with midline cerebellar tumors. American Journal of Neuroradiology, 31, 288–294.

    Article  PubMed  Google Scholar 

  • Molinari, M., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., De Lisa, M., & Leggio, M. G. (2008). Cerebellum and detection of sequences, from perception to cognition. The Cerebellum, 7, 611–615.

    Article  PubMed  Google Scholar 

  • Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery & Psychiatry, 75, 235–240.

    Google Scholar 

  • Moretti, R., Bava, A., Torre, P., Antonello, R. M., & Cazzato, G. (2002a). Reading errors in patients with cerebellar vermis lesions. Journal of Neurology, 249, 461–468.

    Article  PubMed  Google Scholar 

  • Moretti, R., Torre, P., Antonello, R. M., Carraro, N., Zambito-Marsala, S., Ukmar, M. J., et al. (2002b). Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Perceptual and Motor Skills, 94, 677–694.

    Article  PubMed  Google Scholar 

  • Murdoch, B. E. (2010). The cerebellum and language: Historical perspective and review. Cortex, 46, 858–868.

    Article  PubMed  Google Scholar 

  • Murdoch, B. E., & Whelan, B.-M. (2007). Language disorders subsequent to left cerebellar lesions: A case for bilateral cerebellar involvement in language? Folia Phoniatrica et Logopaedica, 59, 184–189.

    Article  PubMed  Google Scholar 

  • Neau, J. P., Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102, 363–370.

    Article  PubMed  Google Scholar 

  • Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47, 117–127.

    Article  PubMed  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. The Lancet, 353, 1662–1667.

    Article  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (1995). Time estimation deficits in developmental dyslexia: Evidence of cerebellar involvement. Proceedings of the Royal Society of London B: Biological Sciences, 259, 43–47.

    Article  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508–511.

    Article  PubMed  Google Scholar 

  • Papathanassiou, D., Etard, O., Mellet, E., Zago, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2000). A common language network for comprehension and production: A contribution to the definition of language epicenters with PET. Neuroimage, 11, 347–357.

    Article  PubMed  Google Scholar 

  • Pernet, C., Andersson, J., Paulesu, E., & Demonet, J. F. (2009). When all hypotheses are right: A multifocal account of dyslexia. Human Brain Mapping, 30, 2278–2292.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585–589.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1989). Positron emission tomographic studies of the processing of singe words. Journal of Cognitive Neuroscience, 1, 153–170.

    Article  PubMed  Google Scholar 

  • Pollack, I. F. (1997). Posterior fossa syndrome. International Review of Neurobiology, 41, 411–432.

    Article  PubMed  Google Scholar 

  • Rae, C., Harasty, J. A., Dzendrowskyj, T. E., Talcott, J. B., Simpson, J. M., Blamire, A. M., et al. (2002). Cerebellar morphology in developmental dyslexia. Neuropsychologia, 40, 1285–1292.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A.-M. K., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8–26.

    Google Scholar 

  • Rapcsak, S. Z., & Beeson, P. M. (2000). Agraphia. In B. Crosson, L. J. G. Rothi, & S. Nadeau (Eds.), Aphasia and language: Theory and practice (pp. 184–220). New York: Guilford.

    Google Scholar 

  • Richter, S., Matthies, K., Ohde, T., Dimitrova, A., Gizewski, E., Beck, A., et al. (2004). Stimulus-response versus stimulus-stimulus-response learning in cerebellar patients. Experimental Brain Research, 158, 438–449.

    Article  PubMed  Google Scholar 

  • Salman, M. S. (2002). Topical review: The cerebellum: It’s about time! But timing is not everything-new insights into the role of the cerebellum in timing motor and cognitive tasks. Journal of Child Neurology, 17, 1–9.

    Article  PubMed  Google Scholar 

  • Schlösser, R., Hutchinson, M., Joseffer, S., Rusinek, H., Saarimaki, A., Stevenson, J., et al. (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery & Psychiatry, 64, 492–498.

    Article  Google Scholar 

  • Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 367–378.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20, 236–260.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121, 561–579.

    Article  PubMed  Google Scholar 

  • Schweizer, T. A., Alexander, M. P., Susan Gillingham, B., Cusimano, M., & Stuss, D. T. (2010). Lateralized cerebellar contributions to word generation: A phonemic and semantic fluency study. Behavioural Neurology, 23, 31–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweizer, T. A., Levine, B., Rewilak, D., O’Connor, C., Turner, G., Alexander, M. P., et al. (2008). Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabilitation and Neural Repair, 22, 72–77.

    Article  PubMed  Google Scholar 

  • Silveri, M. C., Leggio, M. G., & Molinari, M. (1994). The cerebellum contributes to linguistic production A case of agrammatic speech following a right cerebellar lesion. Neurology, 44, 2047–2047.

    Article  PubMed  Google Scholar 

  • Silveri, M. C., Misciagna, S., Leggio, M. G., & Molinari, M. (1997). Spatial dysgraphia and cerebellar lesion A case report. Neurology, 48, 1529–1532.

    Article  PubMed  Google Scholar 

  • Silveri, M. C., Misciagna, S., Leggio, M. G., & Molinari, M. (1999). Cerebellar spatial dysgraphia: Further evidence. Journal of Neurology, 246, 312–313.

    Article  PubMed  Google Scholar 

  • Spencer, R. M., Verstynen, T., Brett, M., & Ivry, R. (2007). Cerebellar activation during discrete and not continuous timed movements: An fMRI study. Neuroimage, 36, 378–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K. O., Ridolfi, L. A., et al. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126, 1998–2008.

    Google Scholar 

  • Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46, 831–844.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59, 1560–1570.

    Article  PubMed  Google Scholar 

  • Strelnikov, K. N., Vorobyev, V. A., Chernigovskaya, T. V., & Medvedev, S. V. (2006). Prosodic clues to syntactic processing – A PET and ERP study. NeuroImage, 29, 1127–1134.

    Article  PubMed  Google Scholar 

  • Tavano, A., & Borgatti, R. (2010). Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex, 46, 907–918.

    Article  PubMed  Google Scholar 

  • Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., et al. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130, 2646–2660.

    Google Scholar 

  • Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Lupo, M., Molinari, M., & Leggio, M. G. (2011). The cerebellar cognitive profile. Brain, 134, 3672–3686.

    Article  PubMed  Google Scholar 

  • Timmann, D., Drepper, J., Maschke, M., Kolb, F., Böring, D., Thilmann, A., et al. (2002). Motor deficits cannot explain impaired cognitive associative learning in cerebellar patients. Neuropsychologia, 40, 788–800.

    Google Scholar 

  • Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231–270.

    Article  PubMed  Google Scholar 

  • Whelan, B.-M., & Murdoch, B. (2005). Unravelling subcortical linguistic substrates: Comparison of thalamic versus cerebellar cognitive-linguistic regulation mechanisms. Aphasiology, 19, 1097–1106.

    Article  Google Scholar 

  • Zettin, M., Cappa, S. F., D’amico, A., Rago, R., Perino, C., Perani, D., et al. (1997). Agrammatic speech production after a right cerebellar haemorrhage. Neurocase, 3, 375–380.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Kim van Dun, Hyo-Jung De Smet, Philippe Paquier, and Jo Verhoeven who contributed to parts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mariën .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Mariën, P. (2017). A Role for the Cerebellum in Language and Related Cognitive and Affective Functions. In: Mody, M. (eds) Neural Mechanisms of Language. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7325-5_9

Download citation

Publish with us

Policies and ethics