Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant physiology, 2nd edn. Academic Press, San Diego
Google Scholar
Adams MR, Hartley AD, Cox LJ (1989) Factors affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiol 6:69–77
CrossRef
Google Scholar
Agar IT, Massantini R, Hess-Pierce B, Kader AA (1999) Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. J Food Sci 64:433–440
CAS
CrossRef
Google Scholar
Ahvenainen R, Hurme E (1994) Minimal processing vegetables. In: Ahvenainen R, Mattila-Sandholm T, Ohlsson T (eds) Minimal processing of foods (VTT) symposium series no 142. Technical Research Centre of Finland (VTT), Espoo, pp 17–35
Google Scholar
Ahvenainen R, Hurme E, Kinnunen A, Luoma T, Skyttä E (1994) Factors affecting the quality retention of minimally processed Chinese cabbage. In: Proceedings of the sixth international symposium of the European Concerted Action Program COST 94 Post harvest Treatment of fruit and vegetables. Current status and future prospects, Commission of the European Community, Brussels
Google Scholar
Allende A, Tomás-Barberán FA, Gil MI (2006) Minimal processing for healthy traditional foods. Trends Food Sci Tech 17:513–519
CAS
CrossRef
Google Scholar
Amanatidou A, Smid EJ, Gorris LGM (1999) Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated microorganisms. J Appl Microbiol 86:429–438
CAS
CrossRef
Google Scholar
Anonymous (1998) FMC Food Machinery Cat. No 209–661-3200. Madera
Google Scholar
Anonymous (2007a) Chemicals used in washing or to assist in the peeling of fruits and vegetables. Code of Federal Regulations 21 CFR 173.315. Office of the Federal Register, U.S. Government Printing Office, Washington, DC
Google Scholar
Anonymous (2007b) Hydrogen peroxide. Code of Federal Regulations 21 CFR 184.1366. Offi ce of the Federal Register, U.S. Government Printing Office. Washington, DC
Google Scholar
Artés F, Allenda A (2005) Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. Eur J Hort Sci 70:231–245
Google Scholar
Artés F, Martínez JA (1996) Influence of packaging treatments on the keeping quality of “Salinas” lettuce. Lebensm-Wiss u-Technol 29:664–668
CrossRef
Google Scholar
Artés F, Conesa MA, Hernandez S, Gil MI (1999) Keeping quality of fresh-cut tomato. Postharvest Biol Technol 17:153–162
CrossRef
Google Scholar
Artés F, Gómez P, Artés-Hernández F, Aguayo E, Escalona V (2007) Improved strategies for keeping overall quality of fresh-cut produce. Acta Hort 746:245–258
CrossRef
Google Scholar
AR-USDA (2005) Fresh-cut fruit moves into the fast lane. Agric Res Mag 53(8):10–12
Google Scholar
Arvanitoyannis ΙS, Tzouros ΝΗ (2006) ISO 22000. The new food quality and safety standard. Stamoulis S.A, Athens
Google Scholar
Bai J, Hagenmaier RD, Baldwin EA (2002) Volatile response of four apple varieties with different coatings during marketing at room temperature. J Agric Food Chem 50:7660–7668
CAS
CrossRef
Google Scholar
Baldwin EA (2004) Ethylene and postharvest commodities. Hortscience 39:1538–1540
CAS
Google Scholar
Baldwin EA, Nisperos-Carriedo MO, Baker RA (1995) Use of edible coatings to preserve quality of lightly processed products. Crit Rev Food Sci Nutr 35:509–524
CAS
CrossRef
Google Scholar
Bansal RK, Walker JT (1999) A study of high pressure water jets for cutting chicken breast meat. J Food Process Eng 22:307–318
CrossRef
Google Scholar
Bartz JA (1999) Washing fresh fruits and vegetables: lessons from treatment of tomatoes and potatoes with water. Dairy Food Environ Sanit 19:853–864
Google Scholar
Beltran D, Selma MV, Marin A, Gil MI (2005a) Ozonated water extends the shelf life of fresh-cut lettuce. J Agric Food Chem 53:5654–5663
CAS
CrossRef
Google Scholar
Beltran D, Selma MV, Tudela JA, Gil MI (2005b) Effect of different sanitizers on microbial and sensory quality of fresh-cut potato strips stored under modified atmosphere or vacuum packaging. Postharvest Biol Technol 37:37–46
CAS
CrossRef
Google Scholar
Ben Yehoshua S, Shapiro B, Chen ZE, Lurie S (1983) Mode of action of plastic film in extending life of lemon and bell pepper fruits by alleviations of water stress. Plant Physiol 73(4):87–93
CAS
CrossRef
Google Scholar
Bett KL, Ingram DA, Grimm CC, Lloyd SW, Spanier AM, Miller JM, Gross KC, Baldwin EA, Vinyard BT (2001) Flavor of fresh-cut gala apples in barrier film packaging as affected bystorage time. J Food Qual 24:141–156
CAS
CrossRef
Google Scholar
Betts GD (1996) A code of practice for the manufacture of vacuum and modified atmosphere packaged chilled foods. Guideline no. 11, CCFRA, Chipping Campden, Glos., UK
Google Scholar
Beuchat RL (2000) Use of sanitizers in raw fruit and vegetable processing. In: Alzamora SM, Tapia ST, López-Malo A (eds) Minimally processed fruits and vegetables, fundamental aspects and applications. An Aspen Publication, Gaithersburg, pp 63–78
Google Scholar
Beuchat LR, Nail BV, Adler BB, Clavero MRS (1998) Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes and lettuce. J Food Sci 61:1305–1311
CAS
Google Scholar
Beuchat LR, Pettigrew CA, Trembaly ME, Roselle BJ, Scouten AJ (2004) Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. J Food Prot 67(8):1702–1708
CAS
CrossRef
Google Scholar
Block SS (1991) Peroxygen compounds. In: Block SS (ed) Disinfection, sterilization, and preservation, 4th edn. Lea & Febiger, Philadelphia, pp 182–190
Google Scholar
Brecht JK (1995) A physiology of lightly processed fruits and vegetables. Hortscience 30:18–22
Google Scholar
Cameron AC, Talasila PC, Joles DW (1995) Predicting fil permeability needs for modifie atmosphere packaging of lightly processed fruits and vegetables. Hort Sci 30(1):25–34
Google Scholar
Cantwell M (1992) Postharvest handling systems: minimally processed fruits and vegetables. In: Kader AA (ed) Postharvest technology of horticultural crops, vol 3311, 2nd edn. University of California, Division of Agriculture and Natural Resources, Oakland, pp 277–281
Google Scholar
Cantwell IM, Suslow TV (2002) Postharvest handling systems: fresh-cut fruits and vegetables. In: Kader A (ed) Postharvest technology of horticultural crops, 2nd ed. University of California, Publication 3311, Oakland, CA, pp 445–463
Google Scholar
Carlin F, Nguyen-The C, Chambroy Y, Reich M (1990) Effects of controlled atmospheres on microbial spoilage, electrolyte leakage and sugar content of fresh ‘ready-to-use’ carrots. Int J Food Sci Technol 25:110–119
CrossRef
Google Scholar
Crisosto C, Mitchell J (2002) Pre-harvest factors affecting fruit and vegetable quality. In: Kader AA (ed) Postharvest technology of horticultural crops. University of California Agriculture and Natural Resources. Publication 3311, p 39–54
Google Scholar
Crisosto C, Garner D, Doyle J, Day KR (1993) Relationship between fruit respiration, bruising susceptibility and temperature in sweet cherries. Hortscience 28(2):132–135
Google Scholar
Dainelli D, Gontardb N, Spyropoulosc D, Zondervan-van den Beukend E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112
CrossRef
CAS
Google Scholar
Day B (1993) Fruit and vegetables. In: Parry RT (ed) Principles and applications of modified atmosphere packaging of food. Blackie Academic and Professional, Glasgow, pp 114–133
CrossRef
Google Scholar
Day BPF (1994) Modified atmosphere packaging and active oackaging of fruits and vegetables. In: Ahvenainen R, Matila-Sandholm T, Ohlsson T (eds) Minimally processing of foods (VTT symposium series 142, Technical Research Centre of Finland (VTT)0, Espoo, p 137–207
Google Scholar
Day BPF (1998) Novel MAP: a brand new approach. Food Manufacture 73(11):22–24
Google Scholar
Day B (2000) Novel MAP for freshly prepared fruit and vegetable products. Postharv News Inform 11:27–31
Google Scholar
Day B (2001) Fresh prepared produce: GMP for high oxygen MAP and non-sulphite dipping. Campden & Chorleywood Food Research Association Group, Chipping Campden, Gloucester, UK Guideline No 31, pp 1–76
Google Scholar
De Kruijfy N, van Beesty M, Rijky R, Sipiläinen-Malm T, Paseiro Losada P, De Meulenaer B (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19(Supplement):144–162
CrossRef
CAS
Google Scholar
Deepa N, Kaur C, George B, Singh B, Kapoor HC (2007) Antioxidant constituents in some sweet pepper (Capsicum annuum L.) LWT—Food Sci Technol 40:121–129
CAS
CrossRef
Google Scholar
Del Aguila JS, Fumi Sasaki F, Sichmann Heiffig L, Ortega EMM, Jacomino AP, Kluge RA (2006) Fresh-cut radish using different cut types and storage temperatures. Postharvest Biol Tec 40:149–154
CrossRef
CAS
Google Scholar
Donati V (2003) Solo se si mantiene la catena del freddo. Colture Protette 8:39–43
Google Scholar
Dong X, Wrolstad RE, Sugar D (2000) Extending shelf life of fresh-cut pears. J Food Sci 65:181–186
CAS
CrossRef
Google Scholar
Dychdala GR (1991) Chlorine and chlorine compounds. In: Block SS (ed) Disinfection, sterilization and preservation, 4th edn. Lea & Febiger Co, Philadelphia, pp 131–151
Google Scholar
Ergun M, Jeong J, Huber DJ, Cantliffe DJ (2007) Physiology of fresh-cut ‘Galia’ (Cucumis melo Var. reticulatus) from ripe fruit treated with 1-methylcyclopropene. Postharvest Biol Technol 44:286–292
CAS
CrossRef
Google Scholar
Gardini F, Lanciotti R, Belletti N, Guerzoni ME (2002) Use of natural aroma compounds to controlmicrobial growth in foods. In: Mohan R (ed) Research advances in food science, vol 3. Global Research Network, Kerala, pp 63–78
Google Scholar
Garrett E (2002) Fresh-cut produce: tracks and trends. In: Lamikanra O (ed) Fresh-cut fruits and vegetables, science, technology and market. CRC Press, Boca Raton, pp 1–10
Google Scholar
Gertmenian D (1992) Maximum shelf-life is critical in fresh cut marketing. Produce Business, October: 76
Google Scholar
Gil MI, Selma MV (2006) Overview of hazards in fresh-cut produce production. Control and management of food safety hazards. In: James JA (ed) Microbial hazard identification in fresh fruits and vegetables. New York, Wiley, pp 155–219
Google Scholar
Gonzalez-Aguilar GA, Ayala-Zavala JF, Olivas GI, de la Rosa LA, Alvarez-Parrilla E (2010) Preserving quality of fresh-cut products using safe technologies. J Verbrauch Lebensm 5:65–72
Google Scholar
Gorny JR, Hess-Pierce B, Kader AA (1998) Effects of fruit ripeness and storage temperature onthe deterioration rate of fresh-cut peach and nectarine slices. Hortscience 33:110–113
Google Scholar
Gorny JR, Cifuentes RA, Hess-Pierce B, Kader AA (2000) Quality changes in fresh-cut pear slices as affected by cultivar, ripeness stage, fruit size, and storage regime. J Food Sci 65(3):541–544
CAS
CrossRef
Google Scholar
Graham DM (1997) Use of ozone for food processing. Food Technol 51(6):72–75
Google Scholar
Gόmez-Lόpez VM, Rajkovic A, Ragaert P, Smigic N, Devlieghere F (2009) Chlorine dioxide for minimally processed produce preservation: a review. Trends Food Sci Technol 20:17–26
CrossRef
CAS
Google Scholar
Herdt J, Feng H (2009) Aqueous antimicrobial treatments to improve fresh and fresh – cut produce safety. In: Fan X, Niemira AB, Doona CJ, Feeherry FE, Gravani BR (eds) Microbial safety of fresh produce. IFT Press/Wiley BlackWell, Hoboken, pp 169–190
Google Scholar
Hernandez-Brenes, C. 2002. Good manufacturing practices for handling, packing, storage and transportation of fresh produce. In: Improving the safety and quality of fresh fruits and vegetables: a training manual for trainers, Chapter 3. Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MA, USA, pp. 1–34.
Google Scholar
Hotchkiss JH (1988) Experimental approaches to determining the safety of food packaged in modified atmospheres. Food Technol 42(9):60–64
Google Scholar
Hurme E, Ahvenainen R Kinnunen A, Skyttä (1994) Factors affecting the quality retention of minimally processed Chinese cabbage. In: Proceedings of the sixth international symposium of the European Concerted Action Program COST 94 Post harvest Treatment of fruit and vegetables. Current status and future prospects, Commission of the European Community, Brussels, Belgium
Google Scholar
Huxsoll CC, Bolin HR (1989) Processing and distribution alternatives for minimally processed fruits and vegetables. Food Technol 43(2):124–128
Google Scholar
Hyodo H, Tamaka K, Watanabe A (1983) Wound induced ethylene production and ACC synthase in mesocarp tissue of winter squash fruit. Plant Cell Physiol 24:963–969
CAS
Google Scholar
Hyodo H, Tanaka K, Yoshisaka J (1985) Induction of 1 amino-cyclopropane-1- carboxylic acid synthase in wounded mesocarp tissue of winter squash fruit, and the effects of ethylene. Plant Cell Physiol 26:161–167
CAS
Google Scholar
IFPA (2003) Flexible packaging material basics. In: Gorny JR (ed) Packaging design for fresh-cut produce. International Fresh-cut Produce Association, Alexandria, pp 1–3
Google Scholar
Inatsu Y, Bari ML, Kawasaki S, Isshiki K, Kawamoto S (2005) Efficacy of acidified sodium chlorite treatments in reducing Escherichia coli O157:H7 on Chinese cabbage. J Food Prot 68:251–255
CAS
CrossRef
Google Scholar
Institut of Food Technologists (IFT) (1991) Food packaging, food protection and the environment: a workshop Report Chicago
Google Scholar
International Fresh-cut Produce Association (2001) Plant cleaning and sanitation: materials and systems. In: Gorny R (ed) Food safety guidelines for the fresh-cut produce industry. International Fresh-cut Produce Association, Alexandria, p 75–96
Google Scholar
Ishikawa K (1986) Guide to quality control. UNIPUB/Kraus International, White Plains
Google Scholar
Jacxsens L, Devlieghere F, Debevere J (1999) Validation of a systematic approach to design equilibrium modified atmosphere packages for fresh-cut produce. Lebensm-Wiss u-Technol 32:425–432
CAS
CrossRef
Google Scholar
Jacxsens L, Devlieghere F, Van der Steen C, Debevere J (2001) Effect of high oxygen atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. Int J Food Microbiol 71:197–210
CAS
CrossRef
Google Scholar
Jacxsens L, Devlieghere F, Debevere J (2002) Predictive modelling for packaging design: equilibrium modified atmosphere package of fresh-cut vegetables subjected to a simulated distribution chain. Int J Food Microbiol 73:331–341
CAS
CrossRef
Google Scholar
James EB (1998) Risk analysis: two tools you can use to assure product safety and reliability. http://www.1stnclass.com/risk_analysis.htm. Accessed 02 Feb 2005
Jennylynd B, Tipvanna J, Ngarmsak T (2010) Processing of fresh-cut tropical fruits and vegetables: a technical guide. Food and Agriculture Organization (FAO) of the United Nations, Regional Office for Asia and the Pacific, Bangkok
Google Scholar
Kabir H (1994) Fresh-cut vegetables. In: Herndon BAL (ed) Modified atmosphere food packaging. Institute of packaging professionals, Herndon, pp 155–160
Google Scholar
Kader AA (2002a) Postharvest biology and technology: an overview. In: Kader AA (ed) Postharvest technology of horticultural crops, 3rd edn, Publ. 3311. University of California, Division of Agriculture and Natural Resources, Oakland, p 39–47
Google Scholar
Kader AA (2002b) Quality and safety factors: definition and evaluation for fresh horticultural crops. In: Kader AA (ed) Postharvest technology of horticultural crops, 3rd edn, Publ. 3311. University of California, Division of Agriculture and Natural Resources, Oakland, p 279–86
Google Scholar
Kader AA, Zagory D, Kerbel EL (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci 28(1):1–30
CAS
CrossRef
Google Scholar
Kim J-G, Yousef AE (2000) Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. J Food Sci 65:521–528
CAS
CrossRef
Google Scholar
Krasaekoopt W, Bhandari B (2011) Fresh-cut vegetables. In: Sinha NK (ed) Handbook of vegetables and vegetable processing. Wiley-BlackWell, Ltd., Ames, pp 221–242
Google Scholar
Kumamoto H, Henley E (1996) Probabilistic risk assessment and management for engineers and scientists [second edition]. IEEE press, Piscataway
Google Scholar
Lamikanra O, Bett-Garber K (2005) Fresh-cut fruit moves into the fast lane. Agric Res 53:10–12
Google Scholar
Laurilla E, Ahvenianen R (2002) Minimal processing in practice. Fresh fruits and vegetables. In: Ohlsson T, Bengtsson N (eds) Minimal processing technologies in the food industry. CRC Boca Raton, Boston/New York/Washington, DC, pp 219–244
CrossRef
Google Scholar
Lopez A (1987) A compte course. In: Canning, 12th ed,Vol III. The canning trade, Baltimore
Google Scholar
Luo Y (2007) Fresh-cut produce wash water reuse affects water quality and packaged product quality and microbial growth in Romaine lettuce. Hortscience 42(6):1413–1419
Google Scholar
Lund BM, Snowdon AL (2000) Fresh and processed fruits. In: Lund BM, Baird-Parker TC, Gould GW (eds) The microbiological safety and quality of food, vol I. Aspen, Gaithersburg, pp 738–758
Google Scholar
Maestrelli A, Chourot JM (2002) Selection des cultivars en relation avec la transformation. In: Albagnac G, Varoquaux JC, Montigaud JC (eds) Technologies de transformation des fruits, Collection sciences and techniques agroalimentaries. Lavoiser, Paris, pp 41–75
Google Scholar
Manolopoulou E, Varzakas T (2015). Chapter 8: minimally processed (fresh-cut) fruits and vegetables: production, quality, and safety. In: Varzakas T, and Tzia C. (eds) Handbook of food processing: food safety, quality and manufacturing processes contemporary food engineering series editor Da-Wen sun. CRC Press, Taylor and Francis Group, Boca Raton, Florida, p. 231–82.
Google Scholar
Mattoo AK, White WB (1991) Regulation of ethylene biosynthesis. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 21–42
Google Scholar
Mazliak P (1983) Plant membrane lipids: changes and alterations during aging and senescence. In: Lieberman M (ed) Post-HarvestPhysiology and crop preservation. Plenum Press, New York
Google Scholar
Mazollier J, Scandella D (1997) La quatrième gamme. In: Tirilly Y, Bourgeois CM (eds) Technologie des legumes. Tec and Doc/Londres, New York/Paris, p 349
Google Scholar
Mazolier J, Scandella D (1999) La quatrieme gamme. In: Tirilly Y, Bourgeois CM (eds) Technologie Des Legumes. Tec and Doc, Paris, pp 349–362
Google Scholar
Mc Eviley AJ, Iyengar R, Otwell WS (1992) Inhibition of enzymatic brewing in foods and beverages. Crit Rev Food Sci Nutr 32(3):253–273
CrossRef
Google Scholar
McDermott RE, Mikulak RJ, Beauregard MR (1996) The basics of FMEA. Productivity, Inc., Portland
Google Scholar
McGlynn WG, Bellmer DD, Reilly SS (2003) Effect of precut sanitizing dip and water jet cutting on quality and shelf-life of fresh-cut watermelon. J Food Qual 26(6):489–498
CrossRef
Google Scholar
Miege M, Obertiκ B (2007) Analyse de la production et du marche des produits de 4me gamme en Europe. In: I prodotti di IV gamma in Europe e in Italia. OESAAS (Osservatorio sull’Economia del Sistema AgroAlimentare della Sicilia), p 17. Publisicula Industria Grafica Editoriale-Palermo
Google Scholar
Montero-Calderón M, Cerdas-Araya M (2011) Fruits and vegetables for the fresh-cut processing industry. In: Martín-Belloso O, Soliva-Fortuny R (eds) Advances in fresh-cut fruits and vegetables processing. CRC Press, Boca Raton/London/New York, pp 186–205
Google Scholar
Moras P, Merendet V (2007) Les legumes prepares de la 1re a la 4e gamme. Marche et encadrement reglementaire. In: Infos CTIFL, May 2007, p 231
Google Scholar
National Advisory Committee on Microbiological Criteria for Foods (NACMCF) (1999) Microbiological safety evaluations and recommendations on fresh produce. Food Control 10:117–143
CrossRef
Google Scholar
Nicola S, Tibaldi G, Fontana E (2009) Fresh-cut produce quality: implications for a system approach. In: Florkowski WJ, Shewfelt R, Brueckner B, Prussia SE (eds) Postharvest handling: a systems approach, 2nd edn. Boston, Elsevier, pp 247–275
CrossRef
Google Scholar
Nisperos-Carriedo MO, Baldwin EA (1994) Method of increasing the stability of fruits, vegetables or fungi and composition thereof. US patent 5,376,391
Google Scholar
O’Beirne D (1990) Modified atmosphere packaging of fruit and vegetables. In: Gormley TG (ed) Chilled foods: the state of the cart. R.T Elsevier Science Publishers, Essex
Google Scholar
Ölmez H, Kretzschmar U (2009) Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT- Food Sci Technol 42:686–693
CrossRef
CAS
Google Scholar
Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martνn-Belloso O (2008) Antioxidant content of fresh-cut pears stored in high-O2 active packages compared with conventional low-O2 active and passive modified atmosphere packaging. J Agric Food Chem 56:932–940
CAS
CrossRef
Google Scholar
Palumbo MS, Gorny JR, Gombas DE, Beuchat LR, Bruhn CM, Cassens B, Delaquis P, Farber JM, Harris LJ, Ito K, Osterholm MT, Smith M, Swanson KMJ (2007) Recommendations for handling fresh-cut leafy green salads by consumers and retail foodservice operators. Food Prot Trends 27:892–898
Google Scholar
Pascual A, Llorca I, Canut A (2007) Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci Technol 18:S29–S32
CAS
CrossRef
Google Scholar
Petersen K, Nielsen PV, Bertelsen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68
CAS
CrossRef
Google Scholar
Pirovani, M., A. Piagentini, G. Güemes, and S. Arkwright. 2004. Reduction of chlorine concentration and microbial load during washing – disinfection of shredded lettuce. Int. J Food Sci Technol. 39:341–347.
Google Scholar
Plotto A, Bai J, Narciso JA, Brecht JK, Baldwin EA (2006) Ethanol vapor prior to processing extends fresh-cut mango storage by decreasing spoilage, but does not always delay ripening. Postharvest Biol Technol 39:134–145
CAS
CrossRef
Google Scholar
Portela SI, Cantwell MI (2001) Cutting blade sharpness affects appearance and other quality attributes of fresh-cut cantaloupe melon. J Food Sci 66:1265–1270
CAS
CrossRef
Google Scholar
Rabobank (2010) European trends in fresh-cut pre-packed produce. Available at: http://www.rabobank.com/content/news/news_archive/013-Europeantrendsinfresh-cutpre-packedproduce.jsp. Accessed 25 Aug 2013
Ragaerta P, Verbekeb W, Devlieghere F, Debevere J (2004) Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Qual Prefer 15:259–270
CrossRef
Google Scholar
Reid MS (1985) Ethylene and abscission. Hortscience 20:45–50
CAS
Google Scholar
Reyes LF, Villarreal JE, Cisneros-Zevallos L (2007) The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem 101(3):1254–1262
CrossRef
CAS
Google Scholar
Richardson SD, Thruston AD, Caughran TV, Collette TW, Patterson KS, Lykins BW (1998) Chemical by -products of chlorine and alternate disinfectants. Food Technol 52(4):58–61
Google Scholar
Rivera-Lopez J, Vazquez-Ortiz FA, Ayala-Zavala F, Sotelo-Mundo RR, Gonzalez-Aguilar GA 2005 Cutting shape and storage temperature affect overall quality of fresh-cut papaya cv. “Maradol”. J Food Sci 70(7): S482–S489.
Google Scholar
Rolle RS, Chism GW III (1987) Physiological consequences of minimally processed fruits and vegetables. J. Food Qual 10:157–177
CrossRef
Google Scholar
Rosen JC, Kader AA (1989) Postharvest physiology and quality maintenance of sliced pear and strawberry fruits. J Food Sci 54:656–659
CAS
CrossRef
Google Scholar
Saftner R, Luo Y, McEvoy J, Abbott JA, Vinyard B (2007) Quality characteristics of fresh-cut watermelon slices from non-treated and 1-methylcyclopropene- and/or ethylene-treated whole fruit. Postharvest Biol Technol 44:71–79
CAS
CrossRef
Google Scholar
Saltveit M (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15:279–292
CAS
CrossRef
Google Scholar
Sandhya (2010) Modified atmosphere packaging of fresh produce: current status and future needs. LWT Food Sci Technol 43:381–392
CAS
CrossRef
Google Scholar
Sapers GM (2003) Washing and sanitizing raw materials for minimally processed fruit and vegetable products. In: Novak JS, Sapers GM, Juneja VK (eds) Microbial safety of minimally processed foods. CRC PRESS, Boca Raton/London/New York/Washington, D.C, pp 222–246
Google Scholar
Sapers GM, Simmons GF (1998) Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technol 52(2):48–52
CAS
Google Scholar
Scandella D, Derens E, Bennahmias R (1990) IVe gamma, la chaine du froid. Infos-CTIFL 59:17–22
Google Scholar
Schlimme DV (1995) Marketing lightly processed fruits and vegetables. Hort Sci 30:15–17
Google Scholar
Scipioni A, Saccarola G, Centazzo A, Arena F (2002) FMEA methodology design, implementation and integration with HACCP system in a food company. Sci Direct. http://www.sciencedirect.com. Accessed 02 Feb 2005
Selma MV, Beltran D, Chacon-Vera E, Gil MI (2006) Effect of ozone on the inactivation of Yersinia enterocolitica and reduction of natural Flora on potatoes. J Food Prot 69:2357–2363
CAS
CrossRef
Google Scholar
Selma MV, Beltran D, Allende A, Chacon-Vera E, Gil MI (2007) Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiol 24:492–499
CAS
CrossRef
Google Scholar
Selma MV, Ibanez AM, Allende A, Cantwell M, Suslow TV (2008a) Effect of gaseous ozone and hot water on microbial and sensory quality of cantaloupe and potential transference of E. coli O157:H7 during cutting. Food Microbiol 25:162–168
CAS
CrossRef
Google Scholar
Selma MV, Ibanez AM, Cantwell M, Suslow TV (2008b) Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. J Food Microbiol 25:558–565
CAS
CrossRef
Google Scholar
Seymour BG, Manning K, Eriksson ME, Popovich HA, Graham JK (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot 53(377):2065–2071
CAS
CrossRef
Google Scholar
Shewfell RL (1986) Postharvest treatment for extending the shelf-life of fruits and vegetables. Food Technol 40(5):70–80
Google Scholar
Soliva-Fortuny RC, Martin-Belloso O (2003) New advances in extending the shelf life of fresh cut fruits: a review. Trends Food Sci Technol 14:341–353
CAS
CrossRef
Google Scholar
Soliva-Fortuny RC, Oms-Oliu G, Martín-Belloso O (2002a) A. Effects of ripeness stages on the storage atmosphere, color, and textural properties of minimally processed apple slices. J Food Sci 67:1958–1963
CAS
CrossRef
Google Scholar
Soliva-Fortuny RC, Biosca-Biosca M, Grigelmo-Miguel N, Martín-Belloso O (2002b) Browning, polyphenol oxidase activity and head space gas composition during storage of minimally processed pears using modified atmosphere packaging. J Sci Food Agric 82:1490–1496
CAS
CrossRef
Google Scholar
Solomos T (1997) Principles underlying modified atmosphere packaging. In: Wiley RC (ed) Minimally processed refrigerated fruits & vegetables. Chapman and Hall, New York, pp 183–225
Google Scholar
Stevenson KE, Combas DE (1999) Verification procedures. In: Stevenson KE, Bernard DT (eds) HACCP – a systematic approach to food safety. The Food Processors Institute, Washington, DC
Google Scholar
Strickland W, Sopher CD, Rice RG, Battles GT (2007) Six years of ozone processing of fresh cut salad mixes. International water technology and ozone V conference, April 2–4, Fresno
Google Scholar
Toivonen PMA, DeEll R (2002) Physiology of fresh-cut fruits and vegetables. In: Lamikanra O (ed) Fresh-cut fruits and vegetables: science, technology and market. CRC Press, Boca Raton, pp 91–124
Google Scholar
Treadway RH, Olson RL (1953) Treatment and packaging of pre-peeled potatoes. Am J Potato Res 30(12):283–288
CrossRef
Google Scholar
Utama IMS, Willis RBH, Ben-Yehoshua S, Kuek C (2002) In vitro efficacy of plant volatiles forinhibiting the growth of fruit and vegetable decaymicroorganisms. J Agri Food Chem 50:6371–6377
CAS
CrossRef
Google Scholar
Van der Steen C, Jacxsens L, Devlieghere F, Debevere J (2002) Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biol Technol 26:49–58
CrossRef
Google Scholar
Varoqaux P, Mazollier J (2002) Overview of the European fresh-cut produce industry. In: Lamikanra O (ed) Fresh-cut fruits and vegetables, science, technology and market. CRC Press, Boca Raton/London/New York/Washington, DC, pp 21–43
Google Scholar
Varoquaux P (1987) Fruits et légumes de quatrième gamme. Revue Prat Froid Cond Air 654:161–165
Google Scholar
Varoquaux P, Wiley RC (1997) Biological and biochemical changes in minimally processed refrigerated fruits and vegetables. In: Wiley RC (ed) Minimally processed refrigerated fruits & vegetables. Chapman and Hall, New York, pp 226–268
Google Scholar
Varzakas TH, Arvanitoyannis IS (2008) Application of ISO22000 and comparison to HACCP for processing of ready to eat vegetables: part I. Int J Food Sci Technol 43:1729–1741
CAS
CrossRef
Google Scholar
Varzakas TH, Arvanitoyannis IS (2009) Application of failure mode & effect analysis (FMEA) and cause & effect analysis for processing of ready to eat vegetables. Part II. Int J Food Sci Technol 44(5):932–939
CAS
CrossRef
Google Scholar
Vigneault C, Rennie TJ, Toussaint V (2008) Cooling of freshly cut and freshly harvested fruits and vegetables. Stewart Postharvest Rev 4:1–10
CrossRef
Google Scholar
Wang CY, Adams DO (1982) Chilling-induced ethylene production in cucumbers (Cucumis sativus L.) Plant Physiol 69:424–427
CAS
CrossRef
Google Scholar
Warf CC (2001) The chemistry and mode of action of acidified sodium chlorite. In: 2001 IFT annual meeting, June 23–June 27, New Orleans, p 1–91
Google Scholar
Watada AE (1986) Effects of ethylene on the quality of fruits and vegetables. Food Technol 40:82–85
CAS
Google Scholar
Watada AE, Abe K, Yamuchi N (1990) Physiological activities of partially processed fruits and vegetables. Food Technol 44:116–122
Google Scholar
Wedding LM (1999) Critical control points. In: Stevenson KE, Bernard DT (eds) HACCP – a systematic approach to food safety. The Food Processors Institute, Washington, DC, pp 81–84
Google Scholar
Weyer A, van de Devleeschouwer MJ, Dony J (1993) Bactericidal activity of disinfectants on Listeria. J Appl Bacteriol 74:480–483
CrossRef
Google Scholar
Wiley RC (1994) Minimally processed refrigerated fruits and vegetables. Chapman and Hall, New York
CrossRef
Google Scholar
Xu L (1999) Use of ozone to improve the safety of fresh fruits and vegetables. Food Technol 53(10):58–61. 63
CAS
Google Scholar
Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189
CAS
CrossRef
Google Scholar
Yang SF, Pratt HK (1978) The physiology of ethylene in wounded plant tissues. In: Kahl G (ed) Biochemistry of wounded plant tissues. Berlin Walter De Gruyter and Co, Berlin, pp 595–622
Google Scholar
Yildiz F (1994) Initial preparation, handling, and distribution of minimally processed refrigerated fruits and vegetables. In: Wiley RC (ed) Minimally processed refrigerated fruits and vegetables. Chapman and Hall, New York, pp 41–48
Google Scholar
Yu YB, Yang SF (1979) Auxin induced ethylene production and its inhibition by amino ethoxy vinyl glycine and cobalt ions. Plant Physiol 64:1074–1077
CAS
CrossRef
Google Scholar
Zagory D, Kader AA (1988) Modified atmosphere packaging of fresh food. Food Technol 42:70–77
Google Scholar
Zhuang RY, Beuchat LR (1996) Effectiveness of trisodium phosphate for killing Salmonella montevideo on tomatoes. Lett Appl Microbiol 22:97–100
CAS
CrossRef
Google Scholar
Zoffoli JP, Latorre BA, Daire N, Viertel S (2005) Effectiveness of chlorine dioxide as infl uenced by concentration, pH, and exposure time on spore germination of Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer. Cein Inv Agr 32(2):142–148
Google Scholar