Multiparticulate Technologies for Fixed-Dose Combinations

  • W. Brett CaldwellEmail author
  • Aditya M. Kaushal
Part of the Advances in Delivery Science and Technology book series (ADST)


Multiparticulates (MPs) offer a high degree of capability and flexibility for attaining pharmacokinetic (PK), pharmacodynamic (PD), or target product profile goals. Reasons to use MPs in fixed-dose combinations (FDCs) include the ability to (1) mix and match release profiles for enhanced PK or PD effects; (2) isolate chemically incompatible active pharmaceutical ingredients (APIs); (3) lower costs or simplify handling and distribution of the FDC relative to two or more separate materials; and (4) maximize commercial opportunities by serving new indications or capturing market exclusivity through improved efficacy and compliance. The primary goals of this chapter are to (1) review the state of the art for MP usage in FDCs and (2) use case studies or hypothetical combinations to describe formulation efficacy improvements enabled through MP usage in FDCs.


Multiparticulates Fixed-dose combination Pharmacokinetics Pharmacodynamics Bioavailability-enhancing drug forms 



The authors would like to thank Marco Vincenti and Jim Coward for the market research and Ann Malkin for editing assistance.


  1. 1.
    Ghebre-Selassie I. Multiparticulate oral drug delivery. New York: Marcel Dekker Inc.; 1994.CrossRefGoogle Scholar
  2. 2.
    Sunil SA, Srikanth MV, Rao NS, Uhumwangho MU, Latha K, Murthy KVR. Chronotherapeutic drug delivery systems – an approach to circadian rhythms diseases. Curr Drug Deliv. 2011;8(6):622–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Code of Federal Regulations, 21 CFR 300.50.Google Scholar
  4. 4.
    World Health Organization. Fixed-dose combinations for HIV/AIDS, tuberculosis, and malaria: report of a meeting held 16–18 December 2003. 2004.Google Scholar
  5. 5.
    Kararli TT, Sedo K, Bossart J. Fixed-dose combinations: fixed-dose combination products – a review (part 2 – analysis). Drug Dev Deliv. 2014;14(3):28–32.Google Scholar
  6. 6.
    Desai D, Wang J, Wen H, Li X, Timmins P. Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm Dev Technol. 2013;18(6):1265–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Baratta P, Lopes CM. Chronopharmaceutical delivery of anti-inflammatory drugs. Anti-Inflammatory Anti-Allergy Agents Med Chem. 2011;10(3):180–9.CrossRefGoogle Scholar
  8. 8.
    Kumar P, Singh S, Gautam H, Kumar Yadav A. A review on impact of chronopharmaceutics on the treatment of disease. Int J Appl Pharm. 2013;5(2):19–25.Google Scholar
  9. 9.
    Levi F, Canon C, Depres-Brummer P, Adam R, Bourin P, Pati A, Florentin I, Misset JL, Bismuth H. The rhythmic organization of the immune network: implications for the chronopharmacologic delivery of interferons, interleukins and cyclosporin. Adv Drug Deliv Rev. 1992;9(1):85–112.CrossRefGoogle Scholar
  10. 10.
    Gavras I, Rosenthal T. Combination therapy as first-line treatment for hypertension. Curr Hypertens Rep. 2004;6(4):267–71.CrossRefPubMedGoogle Scholar
  11. 11.
    du Toit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches. Respir Res. 2006;7:118.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cooppan S, Pillay V, Choonara YE, Du Toit LC, Ndesendo VMK. Rationalising fixed dose combinations for tuberculosis and acquired immunodeficiency syndrome therapy. Int J Biotechnol. 2010;11(3–4):284–304.CrossRefGoogle Scholar
  13. 13.
    Blomberg B, Spinaci S, Fourie B, Laing R. The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bull World Health Organ. 2001;79(1):61–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kempf DJ, Marsh KC, Kumar G, Rodrigues AD, Denissen JF, McDonald E, Kukulka MJ, Hsu A, Granneman GR, Baroldi PA, Sun E, Pizzuti D, Plattner JJ, Norbeck DW, Leonard JM. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother. 1997;41(3):654–60.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kris MG, Hesketh PJ, Somerfield MR, Feyer P, Clark-Snow R, Koeller JM, Morrow GR, Chinnery LW, Chesney MJ, Gralla RJ, Grunberg SM. American Society of Clinical Oncology guideline for antiemetics in oncology: update 2006. J Clin Oncol. 2006;24(18):2932–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Stein C, Baerwald C. Opioids for the treatment of arthritis pain. Expert Opin Pharmacother. 2014;15(2):193–202.CrossRefPubMedGoogle Scholar
  17. 17.
    World Health Organization 2007, “Prevention of cardiovascular disease: guidelines for assessment and Management of Cardiovascular Risk.”Google Scholar
  18. 18.
    U.S. Food and Drug Administration. Guidance for industry: fixed dose combinations, co-packaged drug products, and single-entity versions of previously approved antiretrovirals for the treatment of HIV. Rockville; 2006.Google Scholar
  19. 19.
    U.S. Food and Drug Administration. Guidance for industry: nonclinical safety evaluation of drug or biologic combinations. Rockville, Maryland: U.S. Department of Health and Human Services; 2006.Google Scholar
  20. 20.
    U.S. Food and Drug Administration. Guidance for industry: user fee waivers for FDC and co-packaged HIV drugs for PEPFAR. Rockville, Maryland: U.S. Department of Health and Human Services; 2007.Google Scholar
  21. 21.
    U.S. Food and Drug Administration. Guidance for industry: new chemical entity exclusivity determinations for certain fixed-combination drug products. Rockville, Maryland: U.S. Department of Health and Human Services; 2014.Google Scholar
  22. 22.
    Van Buskirk GA, Asotra S, Balducci C, Basu P, DiDonato G, Dorantes A, Eickhoff WM, Ghosh T, González MA, Henry T, Howard M, Kamm J, Laurenz S, MacKenzie R, Mannion R, Noonan PK, Ocheltree T, Pai U, Poska RP, Putnam ML, Raghavan RR, Ruegger C, Sánchez E, Shah VP, Shao ZJ, Somma R, Tammara V, Thombre AG, Thompson B, Timko RJ, Upadrashta S, Vaithiyalingam S. Best practices for the development, scale-up, and post-approval change control of IR and MR dosage forms in the current quality-by-design paradigm. AAPS PharmSciTech. 2014;15(3):665–93.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Engelen L, De Wijk RA, Van Der Bilt A, Prinz JF, Janssen AM, Bosman F. Relating particles and texture perception. Physiol Behav. 2005;86(1–2):111–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Takeda Pharmaceuticals. Last update 2014. Dexilant. Available at: Accessed June 2014.
  25. 25.
    Sauer D, Cerea M, Dinunzio J, McGinity J. Dry powder coating of pharmaceuticals: a review. Int J Pharm. 2013;457(2):488–502.CrossRefPubMedGoogle Scholar
  26. 26.
    Christensen FN, Bertelsen P. Qualitative description of the Wurster-based fluid-bed coating process. Drug Dev Ind Pharm. 1997;23(5):451–63.CrossRefGoogle Scholar
  27. 27.
    Cordeiro P, Temtem M, Winters C. Spray congealing: applications in the pharmaceutical industry. Chim Oggi/Chem Today. 2013;31(5):69–72.Google Scholar
  28. 28.
    Dierickx L, Saerens L, Almeida A, De Beer T, Remon JP, Vervaet C. Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices. Eur J Pharm Biopharm. 2012;81(3):683–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Thakkar DK, Shiyani B, Patel G, Patel P, Patel R, Chawda Y. Pelletization techniques: a review. Int J Pharm Res. 2012;4(3):26–35.Google Scholar
  30. 30.
    Shukla D, Chakraborty S, Singh S, Mishra B. Lipid-based oral multiparticulate formulations-advantages, technological advances and industrial applications. Expert Opin Drug Deliv. 2011;8(2):207–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Curatolo WJ, Herbig SM, LeMott SR, Lo JB, Appel LE, Friesen DT, Lyon DK, McCray SB, West JB. Enteric coated azithromycin multiparticulates. US Patent Application 20080199527. 2008.Google Scholar
  32. 32.
    Bhaskaran S, Lakshmi PK. Extrusion spheronization: a review. Int J PharmTech Res. 2010;2(4):2429–33.Google Scholar
  33. 33.
    Sinha VR, Agrawal MK, Agarwal A, Singh G, Ghai D. Extrusion-spheronization: process variables and characterization. Crit Rev Ther Drug Carrier Syst. 2009;26(3):275–331.CrossRefPubMedGoogle Scholar
  34. 34.
    Appel LE, Crew MD, Friesen DT, Herbig SM, LeMott SR, Lo JB, Lyon DK, McCray SB, Newbold DD, Ray RJ, West JB. Spray-congeal process using an extruder for preparing multiparticulate azithromycin compositions containing preferably a poloxamer and a glyceride. World Patent Application 2005053653 A1. 2005.Google Scholar
  35. 35.
    Lo JB, Appel LE, Herbig SM, McCray SB, Thombre AG. Formulation design and pharmaceutical development of a novel controlled release form of azithromycin for single-dose therapy. Drug Dev Ind Pharm. 2009;35(12):1522–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Godek E. Comparing drug layering and direct pelletization processes. Pharm Technol. 2014;38(3):72–9.Google Scholar
  37. 37.
    Tirpude RN, Puranik PK, Jaiswal SB, Shehzad S. Drug multiparticulate production and coating technology – a review. Res J Pharm Technol. 2011;4(1):1–18.Google Scholar
  38. 38.
    Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.CrossRefPubMedGoogle Scholar
  39. 39.
    Ragnarsson GA, Silfverstrand KM, Sjogren JA. Pharmaceutical preparation and a process for its preparation. US Patent 4,942,040. 1990.Google Scholar
  40. 40.
    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.CrossRefPubMedGoogle Scholar
  41. 41.
    Brough C, Williams III RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453(1):157–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Breitenbach J. Melt extrusion can bring new benefits to HIV therapy: the example of Kaletra® tablets. Am J Drug Deliv. 2006;4(2):61–4.CrossRefGoogle Scholar
  43. 43.
    Semenchuk MR. Avinza: Elan. Curr Opin Investig Drugs. 2002;3(9):1369–72.PubMedGoogle Scholar
  44. 44.
    Thombre AG, Herbig SM, Alderman JA. Improved ziprasidone formulations with enhanced bioavailability in the fasted state and a reduced food effect. Pharm Res. 2011;28(12):3159–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Thombre AG, Caldwell WB, Friesen DT, McCray SB, Sutton SC. Solid nanocrystalline dispersions of ziprasidone with enhanced bioavailability in the fasted state. Mol Pharm. 2012;9(12):3526–34.CrossRefPubMedGoogle Scholar
  46. 46.
    Krause J, Breitkreutz J. Improving drug delivery in paediatric medicine. Int J Pharm Med. 2008;22(1):41–50.Google Scholar
  47. 47.
    Ravichandiran V, Suba V, Umadevi SK, Jayavasavi G, Kausalya J, Saraswathy T, Senthilnathan B. Chronopharmaceutical drug delivery system. Biomed Pharmacol J. 2009;2(2):333–8.Google Scholar
  48. 48.
    Rogers TL, Wallick D. Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 3: applications for microcapsules. Drug Dev Ind Pharm. 2012;38(5):521–39.CrossRefPubMedGoogle Scholar
  49. 49.
    Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Control Release. 2009;134(2):74–80.CrossRefPubMedGoogle Scholar
  50. 50.
    Amit K, Sonam R. Pulsatile drug delivery system: method and technology review. Int J Drug Dev Res. 2012;4(4):95–107.Google Scholar
  51. 51.
    Vats A, Pathak K. Exploiting microspheres as a therapeutic proficient doer for colon delivery: a review. Expert Opin Drug Deliv. 2013;10(4):545–57.CrossRefPubMedGoogle Scholar
  52. 52.
    Parmar J, Rane M, Dias V, Rajabi-Siahboomi A. Formulation of extended release multiparticulate systems using ethylcellulose. Pharm Times. 2010;42(4):34–9.Google Scholar
  53. 53.
    Das S, Deshmukh R, Jha AK. Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Syst Rev Pharm. 2010;1(1):79–85.CrossRefGoogle Scholar
  54. 54.
    Burke MD, He X, Cook C, Petrov GA, Long S, Coffin MD. Stability enhancement of drug layered pellets in a fixed dose combination tablet. AAPS PharmSciTech. 2013;14(1):312–20.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Thombre AG, Berchielli A, Rogers JF. Extemporaneously prepared controlled release formulations for accelerating the early phase development of drug candidates. Drug Discov Today. 2014;19(5):694–700.CrossRefPubMedGoogle Scholar
  56. 56.
    Abdul S, Chandewar AV, Jaiswal SB. A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS). J Control Release. 2010;147(1):2–16.CrossRefPubMedGoogle Scholar
  57. 57.
    Naik JB, Mokale VJ, More DB, Bari MM, Chavhan RB, More BB. Failure of functionality of coated pellets into tablets – problems and solutions. Res J Pharm Technol. 2011;4(1):43–6.Google Scholar
  58. 58.
    Rahman MA, Ahuja A, Baboota S, Bhavna BV, Saigal N, Ali J. Recent advances in pelletization technique for oral drug delivery: a review. Curr Drug Deliv. 2009;6(1):122–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Vynckier A, Dierickx L, Saerens L, Voorspoels J, Gonnissen Y, De Beer T, Vervaet C, Remon JP. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core. Int J Pharm. 2014;464(1–2):65–74.CrossRefPubMedGoogle Scholar
  60. 60.
    Capsugel. Last update 2014. Duocap capsule-in-capsule technology. Available at Accessed June 2014.
  61. 61.
    Catalent. Last Update 2014. OSDrC optidose drug delivery technology. Available at Accessed June 2014.
  62. 62.
    Gattani YS. Floating multiparticulate drug delivery systems: an overview. Int J Pharm Bio Sci. 2010;1(2):1–14.Google Scholar
  63. 63.
    du Toit LC, Danckwerts MP, Pillay V, Cooppan S, Choonara YE. Heterogeneously configured multiparticulates gastrointestinal drug delivery system. United States Patent Application US 2010/0179170 A1. 2010.Google Scholar
  64. 64.
    Haria M, Plosker GL, Markham A. Felodipine/metoprolol: a review of the fixed dose controlled release formulation in the management of essential hypertension. Drugs. 2000;59(1):141–57.CrossRefPubMedGoogle Scholar
  65. 65.
    McLay JS, MacDonald TM, Hosie J, Elliott HL. The pharmacodynamic and pharmacokinetic profiles of controlled-release formulations of felodipine and metoprolol in free and fixed combinations in elderly hypertensive patients. Eur J Clin Pharmacol. 2000;56(8):529–35.CrossRefPubMedGoogle Scholar
  66. 66.
    Ragnarsson G, Sandberg A, Jonsson UE, Sjogren J. Development of a new controlled release metoprolol product. Drug Dev Ind Pharm. 1987;13(9–11):1495–509.CrossRefGoogle Scholar
  67. 67.
    Sandberg A, Ragnarsson G, Jonsson UE, Sjogren J. Design of a new multiple-unit controlled-release formulation of metoprolol – metoprolol CR. Eur J Clin Pharmacol. 1988;33(Suppl):S3–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Kararli TT, Sedo K, Bossart J. Fixed-dose combination products – what's in the clinic? (part 3 – pipeline). Drug Dev Deliv. 2014;14(4):36–9.Google Scholar
  69. 69.
    Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404(1–2):1–9.CrossRefPubMedGoogle Scholar
  70. 70.

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  1. 1.Bend Research Inc., A Division of CapsugelBendUSA

Personalised recommendations