The Science and Practice of Extrusion-Spheronization

  • Markus Thommes
  • Peter KleinebuddeEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Extrusion-spheronization is one of the important techniques for pellet production. In most cases, the extruded-spheronized pellets are then coated with a functional coating. Extrusion-spheronization is a robust process and allows high drug loading of the pellets. The mean particle size is mainly determined by the die diameter, and its distribution is usually controlled to obtain a narrow particle size distribution. A pelletization aid is required to allow extrusion and spheronization of drugs, and microcrystalline cellulose (MCC) is the standard pelletization aid used in the industry. Different models have been used to explain the functionality of MCC. However, in certain cases MCC may not be suitable for this application, for example, in the case of drugs with low solubility, it may lead to slower drug release. In these cases, alternative pelletization aids like carrageenan or crospovidone have been studied. In recent years, the scale-down for early formulation development was in focus, and therefore, small-scale extruders and spheronizers have been developed. In case of twin-screw extruders, the feeding systems are of high importance with respect to constant product quality. The extrusion process control and application of process analytical technologies (PAT) have made significant progress. In addition, in recent years the spheronization process is better understood.


Pellets Pelletization aid Microcrystalline cellulose Spheronization mechanism 


  1. 1.
    Bornhöft M, Thommes M, Kleinebudde P. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. Eur J Pharm Biopharm. 2005;59:127–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Mangual JO, et al. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting. J Magn Magn Mater. 2010;322(20):3094–100.CrossRefGoogle Scholar
  3. 3.
    Hasa D, et al. Melt extruded helical waxy matrices as a new sustained drug delivery system. Eur J Pharm Biopharm. 2011;79(3):592–600.CrossRefPubMedGoogle Scholar
  4. 4.
    Reynolds AD. A new technique for the production of spherical particles. Manufacturing Chemist & Aerosol News; June 1970. p. 40–3.Google Scholar
  5. 5.
    Conine JW, Hadley HR. Small solid pharmaceutical spheres. Drug & Cosmetic Industry; 1970. p. 38–41.Google Scholar
  6. 6.
    Young CR, Koleng JJ, McGinity JW. Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm. 2002;242(1–2):87–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Young CR, Koleng JJ, McGinity JW. Properties of drug-containing spherical pellets produced by a hot-melt extrusion and spheronization process. J Microencapsul. 2003;20(5):613–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Kleinebudde P. Solid lipid extrusion. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion. New York/Heidelberg/Dordrecht/London: Springer; 2013. p. 299–328.CrossRefGoogle Scholar
  9. 9.
    Reitz C, Kleinebudde P. Spheronization of solid lipid extrudates. Powder Technol. 2009;189(2):238–44.CrossRefGoogle Scholar
  10. 10.
    Krause J, Thommes M, Breitkreutz J. Immediate release pellets with lipid binders obtained by solvent-free cold extrusion. Eur J Pharm Biopharm. 2009;71(1):138–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Dukic-Ott A, et al. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review. Eur J Pharm Biopharm. 2009;71(1):38–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Otero-Espinar FJ, Luzardo-Alvarez A, Blanco-Mendez J. Non-MCC materials as extrusion-spheronization aids in pellets production. J Drug Delivery Sci Technol. 2010;20(4):303–18.CrossRefGoogle Scholar
  13. 13.
    Jain SP, Singh PP, Amin PD. Alternative extrusion-spheronization aids. Drug Dev Ind Pharm. 2010;36(11):1364–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Wilson Di, Rough Sl. Extrusion-spheronisation. In: Salman AD, Hounslow MJ, Seville JPK, editors. Granulation. Amsterdam: Elsevier; 2007. p. 189–217.CrossRefGoogle Scholar
  15. 15.
    Trivedi NR, et al. Pharmaceutical approaches to preparing pelletized dosage forms using the extrusion-spheronization process. Crit Rev Ther Drug Carrier Syst. 2007;24(1):1–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Pretoro G, et al. Extrusion-spheronisation of highly loaded 5-ASA multiparticulate dosage forms. Int J Pharm. 2010;402(1–2):153–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Fielden KE, et al. Thermal studies on the interaction of water and microcrystalline cellulose. J Pharm Pharmacol. 1988;40(10):674–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Ek R, Newton JM. Microcrystalline cellulose as a sponge as an alternative concept to the crystallite-gel model for extrusion and spheronization. Pharm Res. 1998;15(4):509–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Kleinebudde P. The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronization. Pharm Res. 1997;14(6):804–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Battista OA. Microcrystal polymer science. New York: McGraw-Hill Book Company; 1975. 18.Google Scholar
  21. 21.
    Kleinebudde P, Knop K. Direct pelletization of pharmaceutical pellets in fluid-bed processes. In: Salman AD, Hounslow MJ, Seville JPK, editors. Granulation. Amsterdam: Elsevier; 2007. p. 779–811.CrossRefGoogle Scholar
  22. 22.
    Sarkar S, Heng PW, Liew CV. Insights into the functionality of pelletization aid in pelletization by extrusion-spheronization. Pharm Dev Technol. 2013;18(1):61–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Sarkar S, Ang BH, Liew CV. Influence of starting material particle size on pellet surface roughness. AAPS PharmSciTech. 2014;15(1):131–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Mascia S, et al. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder. Int J Pharm. 2010;389(1–2):1–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Dreu R, et al. Physicochemical properties of granulating liquids and their influence on microcrystalline cellulose pellets obtained by extrusion-spheronisation technology. Int J Pharm. 2005;291(1–2):99–111.CrossRefPubMedGoogle Scholar
  26. 26.
    Sarkar S, Liew CV. Moistening liquid-dependent de-aggregation of microcrystalline cellulose and its impact on pellet formation by extrusion-spheronization. AAPS Pharm Sci Tech. 2014;15:753–61.Google Scholar
  27. 27.
    Witzleb R, et al. Influence of needle-shaped drug particles on the solid lipid extrusion process. Powder Technol. 2011;207(1–3):407–13.CrossRefGoogle Scholar
  28. 28.
    Thommes M, et al. Improved bioavailability of darunavir by use of kappa-carrageenan versus microcrystalline cellulose as pelletisation aid. Eur J Pharm Biopharm. 2009;72(3):614–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Schroder M, Kleinebudde P. Structure of disintegrating pellets with regard to fractal geometry. Pharm Res. 1995;12(11):1694–700.CrossRefPubMedGoogle Scholar
  30. 30.
    Liew CV, et al. Functionality of cross-linked polyvinylpyrrolidone as a spheronization aid: a promising alternative to microcrystalline cellulose. Pharm Res. 2005;22(8):1387–98.CrossRefPubMedGoogle Scholar
  31. 31.
    Verheyen P, Steffens KJ, Kleinebudde P. Use of crospovidone as pelletization aid as alternative to microcrystalline cellulose: effects on pellet properties. Drug Dev Ind Pharm. 2009;35(11):1325–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Jain SP, et al. Melt-in-mouth pellets of fexofenadine hydrochloride using crospovidone as an extrusion-spheronisation aid. AAPS PharmSciTech. 2010;11(2):917–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Krueger C, Thommes M, Kleinebudde P. “MCC SANAQ®burst”—a new type of cellulose and its suitability to prepare fast disintegrating pellets. J Pharm Innov. 2010;5(1–2):45–57.CrossRefGoogle Scholar
  34. 34.
    Krueger C, Thommes M, Kleinebudde P. Spheronisation mechanism of MCC II-based pellets. Powder Technol. 2013;238:176–87.CrossRefGoogle Scholar
  35. 35.
    Rojas J, Kumar V. Evaluation of microcrystalline cellulose II (MCCII) as an alternative extrusion-spheronization aid. Pharmazie. 2012;67(7):595–7.PubMedGoogle Scholar
  36. 36.
    Krueger C, Thommes M, Kleinebudde P. Influence of MCC II fraction and storage conditions on pellet properties. Eur J Pharm Biopharm. 2013;85(3 Pt B):1039–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Delalonde M, et al. The rheology of wet powders: a measuring instrument, the compresso-rheometer. Int J Pharm. 1996;130(1):147–51.CrossRefGoogle Scholar
  38. 38.
    Harrison PJ, Newton JM, Rowe RC. The application of capillary rheometry to the extrusion of wet powder masses. Int J Pharm. 1987;35(3):235–42.CrossRefGoogle Scholar
  39. 39.
    Thoma K, Ziegler I. Investigations on the influence of the type of extruder for pelletization by extrusion-spheronization. II. Sphere characteristics. Drug Dev Ind Pharm. 1998;24(5):413–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Ghanam D, Kleinebudde P. Suitability of a flat die press for the manufacture of pharmaceutical pellets by extrusion/spheronization. Drug Dev Ind Pharm. 2011;37(4):456–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Thommes M. Systematische Untersuchungen zur Eignung von kappa-Carrageenan als Pelletierhilfsstoff in der Extrusion/ Sphäronisation. Systematic Investigations of κ-Carrageenan as novel Pelletisation Aid in Wet Extrusion/Spheronisation. Göttingen: Cuvillier; 2006.Google Scholar
  42. 42.
    Sakai T, Thommes M. Investigation into mixing capability and solid dispersion preparation using the DSM Xplore pharma micro extruder. J Pharm Pharmacol. 2014;66(2):218–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Mühlenfeld C, Thommes M. Miniaturization in pharmaceutical extrusion technology: feeding as a challenge of downscaling. AAPS PharmSciTech. 2012;13(1):94–100.CrossRefGoogle Scholar
  44. 44.
    Kleinebudde P, Solvberg AJ, Lindner H. The power-consumption-controlled extruder – a tool for pellet production. J Pharm Pharmacol. 1994;46(7):542–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Kleinebudde P. Use of a power-consumption-controlled extruder in the development of pellet formulations. J Pharm Sci. 1995;84(10):1259–64.CrossRefPubMedGoogle Scholar
  46. 46.
    Köster M, Thommes M. Inline dynamic torque measurement in twin screw extrusion process. Chem Eng J. 2010;164:371–5.CrossRefGoogle Scholar
  47. 47.
    De Beer T, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm. 2011;417(1–2):32–47.CrossRefPubMedGoogle Scholar
  48. 48.
    Fonteyne M, et al. Real-time assessment of critical quality attributes of a continuous granulation process. Pharm Dev Technol. 2013;18(1):85–97.CrossRefPubMedGoogle Scholar
  49. 49.
    Saerens L, et al. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm. 2011;77(1):158–63.CrossRefPubMedGoogle Scholar
  50. 50.
    Saerens L, et al. In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm. 2012;81(1):230–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Saerens L, et al. Visualization and process understanding of material behavior in the extrusion barrel during a hot-melt extrusion process using Raman spectroscopy. Anal Chem. 2013;85(11):5420–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Wahl PR, et al. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion. Int J Pharm. 2013;455(1–2):159–68.CrossRefPubMedGoogle Scholar
  53. 53.
    Sandler N, et al. Pellet manufacturing by extrusion-spheronization using process analytical technology. AAPS PharmSciTech. 2005;6(2):E174–83.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Crowley MM, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.CrossRefPubMedGoogle Scholar
  55. 55.
    Nobuo N. Method and apparatus for making spherical granules. US3277520A, 1966.Google Scholar
  56. 56.
    Erkoboni DF. Extrusion/spheronization. In: Ghebre Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker Inc; 2003. p. 277–318.Google Scholar
  57. 57.
    Krüger C, Thommes M. Multiple batch manufacturing of theophylline pellets using the wet-extrusion/spheronization process with kappa-carrageenan as pelletisation aid. Pharm Dev Technol. 2013;18(1):225–35.CrossRefGoogle Scholar
  58. 58.
    Ghebre Sellassie I. Pellets: a general overview. In: DiNunzio J., editor. Pharmaceutical pelletization technology. New York: Marcel Dekker; 1989. p. 1–14.Google Scholar
  59. 59.
    Rowe RC. Spheronization: a novel pill-masking process? Pharm Int. 1985;6:119–23.Google Scholar
  60. 60.
    Koester M, et al. Systematic evaluations regarding interparticular mass transfer in spheronization. Int J Pharm. 2012;431(1–2):84–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Krüger C, Thommes M, Kleinebudde P. Spheronisation mechanism of MCC II-based pellets. Powder Technol. 2013;238:176–87.CrossRefGoogle Scholar
  62. 62.
    Baert L, Remon JP. Influence of amount of granulation liquid on the drug-release rate from pellets made by extrusion spheronization. Int J Pharm. 1993;95(1–3):135–41.CrossRefGoogle Scholar
  63. 63.
    Liew CV, Chua SM, Heng PWS. Elucidation of spheroid formation with and without the extrusion step. AAPS PharmSciTech. 2007;8(1):10.CrossRefPubMedGoogle Scholar
  64. 64.
    Köster M, Thommes M. New insights into the pelletization mechanism by extrusion/spheronization. AAPS PharmSciTech. 2010;11(4):1549–51.CrossRefGoogle Scholar
  65. 65.
    Köster M, Thommes M. Quantification of mass transfer during spheronisation. AAPS PharmSciTech. 2012;13(2):493–7.CrossRefGoogle Scholar
  66. 66.
    Bialleck S, Rein H. Preparation of starch-based pellets by hot-melt extrusion. Eur J Pharm Biopharm. 2011;79(2):440–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Rudolf R. General overview of compounding process. In: Kohlgrüber K, editor. Corotating twin screw extruders. Munich: Carl Hanser Verlag; 2008. p. 57–89.Google Scholar
  68. 68.
    Martin C. Continuous mixing of solid dosage forms via hot-melt extrusion. Pharm Technol. 2008;32:76–86.Google Scholar
  69. 69.
    Treffer D, et al. Hot melt extrusion as a continious pharmaceutical manufacturing process. In: Repka MA, Langley N, DiNunzio JC, editors. Melt extusion. New York: Springer; 2013. p. 363–9.CrossRefGoogle Scholar
  70. 70.
    Soh JLP, et al. Importance of small pores in microcrystalline cellulose for controlling water distribution during extrusion-spheronization. AAPS PharmSciTech. 2008;9(3):972–81.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Thommes M, Kleinebudde P. Comparison of different κ-Carrageenans in pelletisation by extrusion/spheronisation. 5th World meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology; March 2006.Google Scholar
  72. 72.
    Thommes M, et al. Bioavailability of darunavir in pellets using κ-Carrageenan and MCC as pelletisation aid. AAPS annual meeting and exposition; November 2008.Google Scholar
  73. 73.
    Thommes M, Kleinebudde P. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type. Eur J Pharm Biopharm. 2006;63(1):68–75.CrossRefPubMedGoogle Scholar
  74. 74.
    Schmidt C, Kleinebudde P. Comparison between a twin-screw extruder and a rotary ring die press. Part II: influence of process variables. Eur J Pharm Biopharm. 1998;45(2):173–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Bornhoft M, Thommes M, Kleinebudde P. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. Eur J Pharm Biopharm. 2005;59(1):127–31.CrossRefPubMedGoogle Scholar
  76. 76.
    Michie H, Podczeck F, Newton JM. The influence of plate design on the properties of pellets produced by extrusion and spheronization. Int J Pharm. 2012;434(1–2):175–82.CrossRefPubMedGoogle Scholar
  77. 77.
    Hicks DC, Freese HL. Extrusion and spheronizing equipment. In: Ghebre-Sellassie I, editor. Pharmaceutical pelletization technology. New York: Dekker; 1989. p. 71–100.Google Scholar
  78. 78.
    Wan LSC, Heng PWS, Liew CV. Spheronization conditions on spheroid shape and size. Int J Pharm. 1993;96(1–3):59–65.CrossRefGoogle Scholar
  79. 79.
    Agrawal AM, Howard MA, Neau SH. Extruded and spheronized beads containing no microcrystalline cellulose: influence of formulation and process variables. Pharm Dev Technol. 2004;9(2):197–217.CrossRefPubMedGoogle Scholar
  80. 80.
    Yoo A, Kleinebudde P. Spheronization of small extrudates containing kappa-carrageenan. J Pharm Sci. 2009;98(10):3776–87.CrossRefPubMedGoogle Scholar
  81. 81.
    Corwin EI. Granular flow in a rapidly rotated system with fixed walls. Phys Rev E. 2008;77(3):031308.CrossRefGoogle Scholar
  82. 82.
    Köster M, Thommes M. Analysis of particle kinematics in spheronization via particle image velocimetry. Eur J Pharm Biopharm. 2013;83(2):307–14.CrossRefGoogle Scholar
  83. 83.
    Bouffard J, Bertrand F, Chaouki J. A multiscale model for the simulation of granulation in rotor-based equipment. Chem Eng Sci. 2012;81:106–17.CrossRefGoogle Scholar
  84. 84.
    Bouffard J, et al. Discrete element investigation of flow patterns and segregation in a spheronizer. Comput Chem Eng. 2013;49:170–82.CrossRefGoogle Scholar
  85. 85.
    Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4(1):37–45.CrossRefPubMedGoogle Scholar
  86. 86.
    Ziegler I. Dose sipping technology – a novel dosage form for the administration of drugs. New York: Informa Healthcare; 2008.Google Scholar
  87. 87.
    Zimm KR, Schwartz JB, O’Connor RE. Drug release from a multiparticulate pellet system. Pharm Dev Technol. 1996;1(1):37–42.CrossRefPubMedGoogle Scholar
  88. 88.
    O’Connor RE, Schwartz JB. Drug release mechanism from a microcrystalline cellulose pellet system. Pharm Res. 1993;10(3):356–61.CrossRefPubMedGoogle Scholar
  89. 89.
    Fischer A, Ziegler I. Dosageform with improved release form cefuroximaxetil. PCT /EP2006/003814, 2006.Google Scholar
  90. 90.
    Mistry RB, Sheth NS. A review: self emulsifying drug delivery systems. Int J Pharm Pharm Sci. 2011;3(2):23–8.Google Scholar
  91. 91.
    Tuleu C, et al. Comparative bioavailability study in dogs of self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. J Pharm Sci. 2004;93(6):1495–502.CrossRefPubMedGoogle Scholar
  92. 92.
    Iosio T, et al. Bi-layered self-emulsifying pellets prepared by co-extrusion and spheronization: influence of formulation variables and preliminary study on the in vivo absorption. Eur J Pharm Biopharm. 2008;69(2):686–97.CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang Y, et al. Characterization and evaluation of self-microemulsifying sustained-release pellet formulation of puerarin for oral delivery. Int J Pharm. 2012;427(2):337–44.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  1. 1.Chair of Solids Process Engineering. Technical University DortmundDuesseldorfGermany
  2. 2.Institute of Pharmaceutics and BiopharmaceuticsHeinrich-Heine-UniversityDuesseldorfGermany

Personalised recommendations