Stöckel P, Dietrich S, Petrak D. Inline particle measurement in fluidized beds / use of an inline particle probe for the monitoring of the particle size distribution during spray granulation in fluidized-bed dryers and granulators. Pharm Ind. 2013;75:1824–32.
Google Scholar
Allen T. Particle size measurement. 5th ed. London: Chapman & Hall; 1997.
Google Scholar
© ISO. Representation of results of particle size analysis-Part 1: graphical representation. 1998.
Google Scholar
Tok AT, Goh X, Ng WK, et al. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS Pharm Sci Tech. 2008;9:1083–91.
CAS
CrossRef
Google Scholar
Poutiainen S. From sensors to reasons: fluidized bed spray granulation process monitoring by acoustic emission. Diss Faculty of Health Sciences of the University of Eastern Finland. 2013.
Google Scholar
Findlay WP, Garnet RP, Morris KR. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J Pharm Sci. 2005;94:604–12.
CAS
CrossRef
PubMed
Google Scholar
Laitinen N. Opening new perspectives for visual characterisation of pharmaceutical solids. Diss Faculty of Sciences of the University of Helsinki. 2003.
Google Scholar
Sandler N. Advanced real-time image-based control of pharmaceutical granulation processes. Kuopio: Proc EuPAT 4; 2010.
Google Scholar
Närvänen T, Seppälä K, Antikainen O, et al. A new rapid on-line imaging method to determine particle size distribution of granules. AAPS Pharm Sci Tech. 2008;9:282–7.
CrossRef
Google Scholar
Ervasti T, Rudolph S, Ketolainen J. Particle size measurements with Eyecon ™ particle sizer. 2012. http://www.innopharmalabs.com/products/eyecon_poster_downloads.
Ervasti T. Eyecon ™ particle imager in granular size measurements: a case study with Cellets®. Ghent: Proc EuPAT 5; 2012.
Google Scholar
© ISO. Particle size analysis-laser diffraction methods- part 1: general principles. 1999.
Google Scholar
Heath AR, Fawell PD, Bahri PA, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). Part Part Syst Charact. 2002;19:84–95.
CrossRef
Google Scholar
Ruf A, Worlitschek J, Mazzotti M. Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Charact. 2000;17:167–79.
CAS
CrossRef
Google Scholar
Tadayyon A, Rohani S. Determination of particle size distribution by Par-Tec® 100: modeling and experimental results. Part Part Syst Charact. 1998;15:127–35.
CAS
CrossRef
Google Scholar
Langston PA, Burbidge AS, Jones TF, et al. Particle and droplet size analysis from chord measurements using Bayes’ theorem. Powder Technol. 2001;116:33–42.
CAS
CrossRef
Google Scholar
Langston PA, Jones TF. Non-spherical 2-dimensional particle size analysis from chord measurements using Bayes’ theorem. Part Part Syst Charact. 2001;18:12–21.
CAS
CrossRef
Google Scholar
Langston PA. Comparison of least-squares method and Bayes’ theorem for deconvolution of mixture composition. Chem Eng Sci. 2002;57:2371–9.
CAS
CrossRef
Google Scholar
Bloemen HHJ, De Kroon MGM. Transformation of chord length distributions into particle size distributions using least squares techniques. Part Sci Technol. 2005;23:277–386.
Google Scholar
Petrak D. Simultaneous measurement of particle size and particle velocity by the spatial filtering technique. Part Part Syst Charact. 2002;19:391–400.
CrossRef
Google Scholar
Petrak D, Dietrich S, Eckardt G, et al. In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT). Adv Powder Technol. 2011;22:203–8.
CrossRef
Google Scholar
Aizu Y, Asakura T. Spatial filtering velocimetry, fundamentals and applications. Berlin/Heidelberg/New York: Springer; 2006.
Google Scholar
Hayashi A, Kitigawa Y. Image velocity sensing using an optical fiber array. Appl Opt. 1982;21:1394–9.
CAS
CrossRef
PubMed
Google Scholar
Schmidt-Lehr S, Moritz H-U, Jürgens KC. Online control of particle size during fluidised bed granulation. Pharm Ind. 2007;69:478–84.
CAS
Google Scholar
Närvänen T, Lipsanen T, Antikainen O, et al. Controlling granule size by granulation liquid feed pulsing. Int J Pharm. 2008;357:132–8.
CrossRef
PubMed
Google Scholar
Lipsanen T, Närvänen T, Räikkönen H, et al. Particle size, moisture, and fluidization variations described by indirect In-line physical measurements of fluid bed granulation. AAPS Pharm Sci Tech. 2008;9:1070–7.
CAS
CrossRef
Google Scholar
Huang J, Goolcharran C, Utz J, et al. A PAT approach to enhance process understanding of fluid bed granulation using in-line particle size characterization and multivariate analysis. J Pharm Innov. 2010;5:58–68.
CrossRef
Google Scholar
Burggraeve A, Van den Kerkhof T, Hellings M, et al. Evaluation of in-line spatial filter velocimetry as pat monitoring tool for particle growth during fluid bed granulation. Eur J Pharm Biopharm. 2010;76:138–46.
CAS
CrossRef
PubMed
Google Scholar
Fischer C, Peglow M, Tsotsas E. Restoration of particle size distributions from fiber-optical in-line measurements in fluidized bed processes. Chem Eng Sci. 2011;66:2842–52.
CAS
CrossRef
Google Scholar
Burggraeve A, Van den Kerkhof T, Hellings M, et al. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements. Eur J Pharm Sci. 2011;42:584–92.
CAS
CrossRef
PubMed
Google Scholar
Lourenco V, Lochmann D, Reich G, et al. A quality by design study applied to an industrial pharmaceutical fluid bed granulation. Eur J Pharm Biopharm. 2012;81:438–47.
CAS
CrossRef
PubMed
Google Scholar
Närvänen T. Particle size determination during fluid bed granulation. Diss Faculty of Pharmacy of the University of Helsinki. 2009.
Google Scholar
Steigmiller D. Application of process analytical technology for investigation of fluid bed granulation and active coating during process development and scale-up. Diss Faculty of Mathematics and Natural Science of the University of Bonn. 2012.
Google Scholar
Kukec S, Hudovornik G, Dreu R, et al. (2013) study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes. Drug Dev Ind Pharm. 2014;40(7):952–9. http://informahealthcare.com/ddi
CAS
CrossRef
PubMed
Google Scholar
Kukec S, Dreu R, Vrbanec T, et al. Characterization of agglomerated carvedilol by hot-melt processes in a fluid bed and high shear granulator. Int J Pharm. 2012;430:74–85.
CAS
CrossRef
PubMed
Google Scholar
Roßteuscher K, et al. In-line monitoring of particle size in a fluid bed granulator: positioning and configuration of a sensor. proc. QbD/PAT Conference Oct. 5–7, Heidelberg. 2011.
Google Scholar
Burggraeve A, Monteyne T, Vervaet C, et al. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm. 2013;83:2–15.
CAS
CrossRef
PubMed
Google Scholar
CELLETS® -Pellets from microcrystalline cellulose. www.cellets.com.
Plitzko M, Dietrich S. Optimale Prozessführung im Wurster-Coating, CAV CHEMIE-ANLAGEN + VERFAHREN, 5. Leinfelden-Echterdingen: Konradin-Verlag; 2010. p. 16–8.
Google Scholar