Skip to main content

In-Line Particle Size Characterization of Multiparticulate Systems

  • 1521 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

This chapter describes measurement methods of in-line particle sizing and their application on specific pharmaceutical processes. These methods use different physical measurement principles: acoustic emission, near-infrared spectroscopy, image analysis, laser diffraction, light beam reflectance and the spatial filtering technique. The contribution shows the similarities and differences of off-line and in-line particle sizing and the influence of the process and product properties on the application of an SFT probe IPP 70 (Parsum GmbH, Chemnitz, Germany) as an in-line particle size analyzer. Some case studies of pellet coating processes in fluidized beds show the real-time measurement of PSD at process time with high resolution. These in-line measurements allow the determination of the layer growth, the detection of agglomerates and of the layer thickness, therefore enabling analysis of how the critical process parameters influence the final product properties. Information about multiparticulate processes can be acquired using in-line sizing technique which in turn contributes to the scientifically founded quality assurance of pharmaceutical products and enables the creation of prediction models and thus Quality by Design.

Keywords

  • In-line characterization
  • Particle size
  • Spatial filtering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7012-4_12
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7012-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13
Fig. 12.14
Fig. 12.15
Fig. 12.16
Fig. 12.17
Fig. 12.18
Fig. 12.19
Fig. 12.20
Fig. 12.21
Fig. 12.22
Fig. 12.23
Fig. 12.24
Fig. 12.25

References

  1. Stöckel P, Dietrich S, Petrak D. Inline particle measurement in fluidized beds / use of an inline particle probe for the monitoring of the particle size distribution during spray granulation in fluidized-bed dryers and granulators. Pharm Ind. 2013;75:1824–32.

    Google Scholar 

  2. Allen T. Particle size measurement. 5th ed. London: Chapman & Hall; 1997.

    Google Scholar 

  3. © ISO. Representation of results of particle size analysis-Part 1: graphical representation. 1998.

    Google Scholar 

  4. Tok AT, Goh X, Ng WK, et al. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS Pharm Sci Tech. 2008;9:1083–91.

    CAS  CrossRef  Google Scholar 

  5. Poutiainen S. From sensors to reasons: fluidized bed spray granulation process monitoring by acoustic emission. Diss Faculty of Health Sciences of the University of Eastern Finland. 2013.

    Google Scholar 

  6. Findlay WP, Garnet RP, Morris KR. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J Pharm Sci. 2005;94:604–12.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Laitinen N. Opening new perspectives for visual characterisation of pharmaceutical solids. Diss Faculty of Sciences of the University of Helsinki. 2003.

    Google Scholar 

  8. Sandler N. Advanced real-time image-based control of pharmaceutical granulation processes. Kuopio: Proc EuPAT 4; 2010.

    Google Scholar 

  9. Närvänen T, Seppälä K, Antikainen O, et al. A new rapid on-line imaging method to determine particle size distribution of granules. AAPS Pharm Sci Tech. 2008;9:282–7.

    CrossRef  Google Scholar 

  10. Ervasti T, Rudolph S, Ketolainen J. Particle size measurements with Eyecon ™ particle sizer. 2012. http://www.innopharmalabs.com/products/eyecon_poster_downloads.

  11. Ervasti T. Eyecon ™ particle imager in granular size measurements: a case study with Cellets®. Ghent: Proc EuPAT 5; 2012.

    Google Scholar 

  12. © ISO. Particle size analysis-laser diffraction methods- part 1: general principles. 1999.

    Google Scholar 

  13. Heath AR, Fawell PD, Bahri PA, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). Part Part Syst Charact. 2002;19:84–95.

    CrossRef  Google Scholar 

  14. Ruf A, Worlitschek J, Mazzotti M. Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Charact. 2000;17:167–79.

    CAS  CrossRef  Google Scholar 

  15. Tadayyon A, Rohani S. Determination of particle size distribution by Par-Tec® 100: modeling and experimental results. Part Part Syst Charact. 1998;15:127–35.

    CAS  CrossRef  Google Scholar 

  16. Langston PA, Burbidge AS, Jones TF, et al. Particle and droplet size analysis from chord measurements using Bayes’ theorem. Powder Technol. 2001;116:33–42.

    CAS  CrossRef  Google Scholar 

  17. Langston PA, Jones TF. Non-spherical 2-dimensional particle size analysis from chord measurements using Bayes’ theorem. Part Part Syst Charact. 2001;18:12–21.

    CAS  CrossRef  Google Scholar 

  18. Langston PA. Comparison of least-squares method and Bayes’ theorem for deconvolution of mixture composition. Chem Eng Sci. 2002;57:2371–9.

    CAS  CrossRef  Google Scholar 

  19. Bloemen HHJ, De Kroon MGM. Transformation of chord length distributions into particle size distributions using least squares techniques. Part Sci Technol. 2005;23:277–386.

    Google Scholar 

  20. Petrak D. Simultaneous measurement of particle size and particle velocity by the spatial filtering technique. Part Part Syst Charact. 2002;19:391–400.

    CrossRef  Google Scholar 

  21. Petrak D, Dietrich S, Eckardt G, et al. In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT). Adv Powder Technol. 2011;22:203–8.

    CrossRef  Google Scholar 

  22. Aizu Y, Asakura T. Spatial filtering velocimetry, fundamentals and applications. Berlin/Heidelberg/New York: Springer; 2006.

    Google Scholar 

  23. Hayashi A, Kitigawa Y. Image velocity sensing using an optical fiber array. Appl Opt. 1982;21:1394–9.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Schmidt-Lehr S, Moritz H-U, Jürgens KC. Online control of particle size during fluidised bed granulation. Pharm Ind. 2007;69:478–84.

    CAS  Google Scholar 

  25. Närvänen T, Lipsanen T, Antikainen O, et al. Controlling granule size by granulation liquid feed pulsing. Int J Pharm. 2008;357:132–8.

    CrossRef  PubMed  Google Scholar 

  26. Lipsanen T, Närvänen T, Räikkönen H, et al. Particle size, moisture, and fluidization variations described by indirect In-line physical measurements of fluid bed granulation. AAPS Pharm Sci Tech. 2008;9:1070–7.

    CAS  CrossRef  Google Scholar 

  27. Huang J, Goolcharran C, Utz J, et al. A PAT approach to enhance process understanding of fluid bed granulation using in-line particle size characterization and multivariate analysis. J Pharm Innov. 2010;5:58–68.

    CrossRef  Google Scholar 

  28. Burggraeve A, Van den Kerkhof T, Hellings M, et al. Evaluation of in-line spatial filter velocimetry as pat monitoring tool for particle growth during fluid bed granulation. Eur J Pharm Biopharm. 2010;76:138–46.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Fischer C, Peglow M, Tsotsas E. Restoration of particle size distributions from fiber-optical in-line measurements in fluidized bed processes. Chem Eng Sci. 2011;66:2842–52.

    CAS  CrossRef  Google Scholar 

  30. Burggraeve A, Van den Kerkhof T, Hellings M, et al. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements. Eur J Pharm Sci. 2011;42:584–92.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Lourenco V, Lochmann D, Reich G, et al. A quality by design study applied to an industrial pharmaceutical fluid bed granulation. Eur J Pharm Biopharm. 2012;81:438–47.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Närvänen T. Particle size determination during fluid bed granulation. Diss Faculty of Pharmacy of the University of Helsinki. 2009.

    Google Scholar 

  33. Steigmiller D. Application of process analytical technology for investigation of fluid bed granulation and active coating during process development and scale-up. Diss Faculty of Mathematics and Natural Science of the University of Bonn. 2012.

    Google Scholar 

  34. Kukec S, Hudovornik G, Dreu R, et al. (2013) study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes. Drug Dev Ind Pharm. 2014;40(7):952–9. http://informahealthcare.com/ddi

    CAS  CrossRef  PubMed  Google Scholar 

  35. Kukec S, Dreu R, Vrbanec T, et al. Characterization of agglomerated carvedilol by hot-melt processes in a fluid bed and high shear granulator. Int J Pharm. 2012;430:74–85.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Roßteuscher K, et al. In-line monitoring of particle size in a fluid bed granulator: positioning and configuration of a sensor. proc. QbD/PAT Conference Oct. 5–7, Heidelberg. 2011.

    Google Scholar 

  37. Burggraeve A, Monteyne T, Vervaet C, et al. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm. 2013;83:2–15.

    CAS  CrossRef  PubMed  Google Scholar 

  38. CELLETS® -Pellets from microcrystalline cellulose. www.cellets.com.

  39. Plitzko M, Dietrich S. Optimale Prozessführung im Wurster-Coating, CAV CHEMIE-ANLAGEN + VERFAHREN, 5. Leinfelden-Echterdingen: Konradin-Verlag; 2010. p. 16–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Controlled Release Society

About this chapter

Cite this chapter

Dietrich, S., Petrak, D. (2017). In-Line Particle Size Characterization of Multiparticulate Systems. In: Rajabi-Siahboomi, A. (eds) Multiparticulate Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7012-4_12

Download citation