Skip to main content

Singular Domains

  • Chapter
  • First Online:
Divergence Operator and Related Inequalities

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 806 Accesses

Abstract

In view of the previous chapters it is a natural question whether similar results can be obtained for more general domains. With this goal, we consider generalizations of Korn p and div p using weighted Sobolev norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Weak-type is weaker than continuity as an operator \(T: L^{1}(\varOmega ) \rightarrow L^{1}(\varOmega )\) (usually called strong-type (1, 1) in Harmonic Analysis [84]). Indeed, for any λ > 0, the inequality

    $$\displaystyle{\lambda \vert \{x: \vert Tf(x)\vert >\lambda \} \vert \leq \| Tf\|_{L^{1}(\varOmega )},}$$

    is immediate.

References

  1. Acosta, G., Durán, R.G., Lombardi, A.L.: Weighted Poincaré and Korn inequalities for Hölder α domains. Math. Methods Appl. Sci. 29 (4), 387–400 (2006). DOI 10.1002/mma.680. URL http://dx.doi.org/10.1002/mma.680

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Durán, R.G., López Garcia, F.: Korn inequality and divergence operator: counterexamples and optimality of weighted estimates. Proc. Am. Math. Soc. 141 (1), 217–232 (2013). DOI 10.1090/S0002-9939-2012-11408-X. URL http://dx.doi.org/10.1090/S0002-9939-2012-11408-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Acosta, G., Ojea, I.: Korns inequalities for generalized external cusps. Math. Methods Appl. Sci. 39 (17), 4935–4950 (2016). DOI 10.1002/mma.3170. URL http://dx.doi.org/10.1002/mma.3170

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, second edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  5. Agmon, S.: Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965)

    Google Scholar 

  6. Andreou, E., Dassios, G., Polyzos, D.: Korn’s constant for a spherical shell. Quart. Appl. Math. 46 (3), 583–591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boas, H.P., Straube, E.J.: Integral inequalities of Hardy and Poincaré type. Proc. Amer. Math. Soc. 103 (1), 172–176 (1988). DOI 10.2307/2047547. URL http://dx.doi.org/10.2307/2047547

    MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, vol. 1939. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008). DOI 10.1007/978-3-540-78319-0. URL http://dx.doi.org/10.1007/978-3-540-78319-0. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by Boffi and Lucia Gastaldi

  9. Buckley, S.M., Koskela, P.: New Poincaré inequalities from old. Ann. Acad. Sci. Fenn. Math. 23 (1), 251–260 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. In: Proc. Sympos. Pure Math., Vol. IV, pp. 33–49. American Mathematical Society, Providence, R.I. (1961)

    Google Scholar 

  11. Ciarlet, P.G.: Mathematical elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity

    Google Scholar 

  12. Ciarlet, P.G.: On Korn’s inequality. Chin. Ann. Math. Ser. B 31 (5), 607–618 (2010). DOI 10.1007/s11401-010-0606-3. URL http://dx.doi.org/10.1007/s11401-010-0606-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G., Ciarlet Jr., P.: Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15 (2), 259–271 (2005). DOI 10.1142/S0218202505000352. URL http://dx.doi.org/10.1142/S0218202505000352

    Article  MathSciNet  MATH  Google Scholar 

  14. Duoandikoetxea, J.: Fourier analysis, Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI (2001). Translated and revised from the 1995 Spanish original by David Cruz-Uribe

    Google Scholar 

  15. Duran, R., Muschietti, M.A., Russ, E., Tchamitchian, P.: Divergence operator and Poincaré inequalities on arbitrary bounded domains. Complex Var. Elliptic Equ. 55 (8–10), 795–816 (2010). DOI 10.1080/17476931003786659. URL http://dx.doi.org/10.1080/17476931003786659

    Article  MathSciNet  MATH  Google Scholar 

  16. Durán, R.G., Muschietti, M.A.: The Korn inequality for Jones domains. Electron. J. Differential Equations pp. No. 127, 10 pp. (electronic) (2004)

    Google Scholar 

  17. Fichera, G.: Existence theorems in linear and semi-linear elasticity. Z. Angew. Math. Mech. 54, T24–T36 (1974). Vorträge der Wissenschaftlichen Jahrestagung der Gesellschaft für Angewandte Mathematik und Mechanik (Munich, 1973)

    Google Scholar 

  18. Friedrichs, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Amer. Math. Soc. 41 (3), 321–364 (1937). DOI 10.2307/1989786. URL http://dx.doi.org/10.2307/1989786

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. of Math. (2) 48, 441–471 (1947)

    Google Scholar 

  20. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (11), 1461–1506 (2002). DOI 10.1002/cpa.10048. URL http://dx.doi.org/10.1002/cpa.10048

    Article  MathSciNet  MATH  Google Scholar 

  21. Geymonat, G., Gilardi, G.: Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers. In: Équations aux dérivées partielles et applications, pp. 541–548. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998)

    Google Scholar 

  22. Gobert, J.: Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Roy. Sci. Liège 31, 182–191 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Hlaváček, I., Nečas, J.: On inequalities of Korn’s type. I. Boundary-value problems for elliptic system of partial differential equations. Arch. Rational Mech. Anal. 36, 305–311 (1970)

    MATH  Google Scholar 

  24. Hlaváček, I., Nečas, J.: On inequalities of Korn’s type. II. Applications to linear elasticity. Arch. Rational Mech. Anal. 36, 312–334 (1970)

    Article  MATH  Google Scholar 

  25. Horgan, C.O.: On Korn’s inequality for incompressible media. SIAM J. Appl. Math. 28, 419–430 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37 (4), 491–511 (1995). DOI 10.1137/1037123. URL http://dx.doi.org/10.1137/1037123

    Article  MathSciNet  MATH  Google Scholar 

  27. Horgan, C.O., Payne, L.E.: On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Anal. 82 (2), 165–179 (1983). DOI 10.1007/BF00250935. URL http://dx.doi.org/10.1007/BF00250935

    MATH  Google Scholar 

  28. Jiang, R., Kauranen, A.: Korn inequality on irregular domains. J. Math. Anal. Appl. 423 (1), 41–59 (2015). DOI 10.1016/j.jmaa.2014.09.076. URL http://dx.doi.org/10.1016/j.jmaa.2014.09.076

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, R., Kauranen, A.: Korn’s inequality and John domains. Preprint (2015)

    Google Scholar 

  30. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1–2), 71–88 (1981). DOI 10.1007/BF02392869. URL http://dx.doi.org/10.1007/BF02392869

    Article  MathSciNet  MATH  Google Scholar 

  31. Kesavan, S.: On Poincaré’s and J. L. Lions’ lemmas. C. R. Math. Acad. Sci. Paris 340 (1), 27–30 (2005). DOI 10.1016/j.crma.2004.11.021. URL http://dx.doi.org/10.1016/j.crma.2004.11.021

    Article  MathSciNet  MATH  Google Scholar 

  32. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). DOI 10.1137/1.9781611970845. URL http://dx.doi.org/10.1137/1.9781611970845

  33. Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (16), 483–487 (1989). DOI 10.1070/RM1989v044n06ABEH002297. URL http://dx.doi.org/10.1070/RM1989v044n06ABEH002297

    MathSciNet  MATH  Google Scholar 

  34. Kondratiev, V.A., Oleinik, O.A.: Hardy’s and Korn’s type inequalities and their applications. Rend. Mat. Appl. (7) 10 (3), 641–666 (1990)

    Google Scholar 

  35. Korn, A.: Die eigenschwingungen eines elastichen korpers mit ruhender oberflache. Akad. der Wissensch Munich, Math-phys. Kl, Beritche 36 (0), 351–401 (1906)

    Google Scholar 

  36. Korn, A.: Ubereinige ungleichungen, welche in der theorie der elastischen und elektrischen schwingungen eine rolle spielen. Bulletin Internationale, Cracovie Akademie Umiejet, Classe de sciences mathematiques et naturelles (0), 705–724 (1909)

    Google Scholar 

  37. Kufner, A., Persson, L.E.: Weighted inequalities of Hardy type. World Scientific Publishing Co., Inc., River Edge, NJ (2003). DOI 10.1142/5129. URL http://dx.doi.org/10.1142/5129

    Book  MATH  Google Scholar 

  38. López Garcia, F.: A decomposition technique for integrable functions with applications to the divergence problem. J. Math. Anal. Appl. 418 (1), 79–99 (2014). DOI 10.1016/j.jmaa.2014.03.080. URL http://dx.doi.org/10.1016/j.jmaa.2014.03.080

    Article  MathSciNet  MATH  Google Scholar 

  39. Martio, O.: Definitions for uniform domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1), 197–205 (1980). DOI 10.5186/aasfm.1980.0517. URL http://dx.doi.org/10.5186/aasfm.1980.0517

    Article  MathSciNet  MATH  Google Scholar 

  40. Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numér. 15 (3), 237–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Payne, L.E., Weinberger, H.F.: On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89–98 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970)

    Google Scholar 

  43. Ting, T.W.: Generalized Korn’s inequalities. Tensor (N.S.) 25, 295–302 (1972). Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi’s seventieth birthday, Vol. II

    Google Scholar 

  44. Weck, N.: Local compactness for linear elasticity in irregular domains. Math. Methods Appl. Sci. 17 (2), 107–113 (1994). DOI 10.1002/mma.1670170204. URL http://dx.doi.org/10.1002/mma.1670170204

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Acosta, G., Durán, R.G. (2017). Singular Domains. In: Divergence Operator and Related Inequalities. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6985-2_4

Download citation

Publish with us

Policies and ethics