Advertisement

Korn’s Inequalities

  • Gabriel Acosta
  • Ricardo G. Durán
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Introduced in the beginning of the past century [67, 69, 68], the Korn inequality \(\|\mathbf{D}\mathbf{u}\|_{L^{2}(\varOmega )^{n\times n}} \leq C\|\boldsymbol{\varepsilon }(\mathbf{u})\|_{L^{2}(\varOmega )^{n\times n}},\) has become a standard topic in the literature of continuum mechanics.

References

  1. 1.
    Acosta, G., Durán, R.G., Lombardi, A.L.: Weighted Poincaré and Korn inequalities for Hölder α domains. Math. Methods Appl. Sci. 29 (4), 387–400 (2006). DOI 10.1002/mma.680. URL http://dx.doi.org/10.1002/mma.680 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 15.
    Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)zbMATHGoogle Scholar
  3. 31.
    Détraz, J.: Classes de Bergman de fonctions harmoniques. Bull. Soc. Math. France 109 (2), 259–268 (1981). URL http://www.numdam.org/item?id=BSMF_1981__109__259_0
  4. 39.
    Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19, second edn. American Mathematical Society, Providence, RI (2010). DOI 10.1090/gsm/019. URL http://dx.doi.org/10.1090/gsm/019
  5. 58.
    Jiang, R., Kauranen, A.: Korn inequality on irregular domains. J. Math. Anal. Appl. 423 (1), 41–59 (2015). DOI 10.1016/j.jmaa.2014.09.076. URL http://dx.doi.org/10.1016/j.jmaa.2014.09.076 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 64.
    Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). DOI 10.1137/1.9781611970845. URL http://dx.doi.org/10.1137/1.9781611970845
  7. 65.
    Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308 (16), 483–487 (1989). DOI 10.1070/RM1989v044n06ABEH002297. URL http://dx.doi.org/10.1070/RM1989v044n06ABEH002297 MathSciNetzbMATHGoogle Scholar
  8. 67.
    Korn, A.: Die eigenschwingungen eines elastichen korpers mit ruhender oberflache. Akad. der Wissensch Munich, Math-phys. Kl, Beritche 36 (0), 351–401 (1906)Google Scholar
  9. 68.
    Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas ou les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10, 165–269 (1908). URL http://www.numdam.org/item?id=AFST_1908_2_10__165_0
  10. 69.
    Korn, A.: Ubereinige ungleichungen, welche in der theorie der elastischen und elektrischen schwingungen eine rolle spielen. Bulletin Internationale, Cracovie Akademie Umiejet, Classe de sciences mathematiques et naturelles (0), 705–724 (1909)Google Scholar
  11. 86.
    Ting, T.W.: Generalized Korn’s inequalities. Tensor (N.S.) 25, 295–302 (1972). Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi’s seventieth birthday, Vol. IIGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Gabriel Acosta
    • 1
  • Ricardo G. Durán
    • 1
  1. 1.Department of Mathematics and IMASUniversity of Buenos Aires and CONICETBuenos AiresArgentina

Personalised recommendations