Recent Developments in Spectral Element Simulations of Moving-Domain Problems

  • Paul Fischer
  • Martin Schmitt
  • Ananias Tomboulides
Chapter
Part of the Fields Institute Communications book series (FIC, volume 79)

Abstract

Presented here are recent developments in spectral element methods for simulations of incompressible and low-Mach-number flows in domains with moving boundaries. Features include PDE-based mesh motion, implicit treatment of fluid–structure interaction based on a Green’s function decomposition, and an arbitrary Lagrangian-Eulerian formulation for low-Mach-number flows that includes an evolution equation for the background thermodynamic pressure. Several examples illustrate the basic principles introduced in the text.

Notes

Acknowledgements

This material was based upon work supported by U.S. Department of Energy, Office of Science, the Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility. The work of the second author was carried out at the Aerothermochemistry and Combustion Systems Laboratory, LAV-ETH Zurich.

References

  1. 1.
    S. Hosseini, R. Vinuesa1, P. Schlatter, A. Hanifi, D. Henningson, Int. J. of Heat and Fluid Flow (submitted)Google Scholar
  2. 2.
    M. Schmitt, Direct numerical simulations in engine-like geometries. Ph.D. thesis, ETH Zurich (2014). Zurich, CHGoogle Scholar
  3. 3.
    M. Schmitt, K. Boulouchos, Int. J. of Engine Res. p. 1468087415619289 (2015)Google Scholar
  4. 4.
    M. Schmitt, C. Frouzakis, Y. Wright, A. Tomboulides, K. Boulouchos, Int. J. of Engine Res. 17(1), 63 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Patera, J. Comput. Phys. 54, 468 (1984)CrossRefGoogle Scholar
  6. 6.
    S. Orszag, M. Israeli, M. Deville, J. Sci. Comp. 1, 75 (1986)CrossRefGoogle Scholar
  7. 7.
    Y. Maday, A. Patera, E. Rønquist, J. Sci. Comput. 5, 263 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Tomboulides, M. Israeli, G. Karniadakis, J. Sci. Comput. 4, 291 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Perot, J. Comp. Phys. 108, 51 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Couzy, Spectral element discretization of the unsteady Navier-Stokes equations and its iterative solution on parallel computers. Ph.D. thesis, Swiss Federal Institute of Technology-Lausanne (1995). Thesis nr. 1380Google Scholar
  11. 11.
    P. Fischer, J. Comput. Phys. 133, 84 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Fischer, J. Lottes, in Domain Decomposition Methods in Science and Engineering Series, ed. by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, J. Xu (Springer, Berlin, 2004)Google Scholar
  13. 13.
    J.W. Lottes, P.F. Fischer, J. Sci. Comput. 24, 45 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Tufo, P. Fischer, J. Parallel Distrib. Comput. 61, 151 (2001)CrossRefGoogle Scholar
  15. 15.
    P. Fischer, J. Lottes, W. Pointer, A. Siegel, J. Phys. Conf. Series 125, 012076 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Lottes, Independent quality measures for symmetric AMG components. Tech. Rep. ANL/MCS-P1820-0111, Argonne National Laboratory, Argonne, IL, USA (2011)Google Scholar
  17. 17.
    J. Boyd, J. Comput. Phys. 143, 283 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Fischer, J. Mullen, Comptes rendus de l’Académie des sciences, Série I- Analyse numérique 332, 265 (2001)Google Scholar
  19. 19.
    J. Malm, P. Schlatter, P. Fischer, D. Henningson, J. Sci. Comp. 57, 254 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Tufo, P. Fischer, in Proc. of the ACM/IEEE SC99 Conf. on High Performance Networking and Computing, Gordon Bell Prize (IEEE Computer Soc., CDROM, 1999)Google Scholar
  21. 21.
    L. Ho, A Legendre spectral element method for simulation of incompressible unsteady viscous free-surface flows. Ph.D. thesis, Massachusetts Institute of Technology (1989). Cambridge, MA.Google Scholar
  22. 22.
    L. Ho, Y. Maday, A. Patera, E. Rønquist, Comput. Methods Appl. Mech. Engrg. 80, 65 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    L. Ho, A. Patera, Comput. Methods Appl. Mech. Engng. 80, 355 (1990)CrossRefGoogle Scholar
  24. 24.
    Y. Maday, A. Patera, in State-of-the-Art Surveys in Computational Mechanics, ed. by A. Noor, J. Oden (ASME, New York, 1989), pp. 71–143Google Scholar
  25. 25.
    M. Deville, P. Fischer, E. Mund, High-Order Methods for Incompressible Fluid Flow (Cambridge University Press, Cambridge, 2002)CrossRefMATHGoogle Scholar
  26. 26.
    P. Fischer, A. Patera, J. Comput. Phys. 92, 380 (1991)CrossRefGoogle Scholar
  27. 27.
    J. Guermond, P. Minev, J. Shen, Comput. Methods Appl. Mech. Engrg. 195, 6011 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A.G. Tomboulides, J.C.Y. Lee, S.A. Orszag, J. Sci. Comp. 12, 139 (1997)CrossRefGoogle Scholar
  29. 29.
    A. Tomboulides, S. Orszag, J. Comput. Phys. 146(691–706) (1998)Google Scholar
  30. 30.
    B.T. Chu, X. Kovasznay, J. Fluid Mech. 3(5), 494 (1958)MathSciNetCrossRefGoogle Scholar
  31. 31.
    R.G. Rehm, H.R. Baum, J. Res. Nat. Bur. Stand. 83(3), 97 (1978)CrossRefGoogle Scholar
  32. 32.
    A. Majda, J. Sethian, Combust. Sci. Tech. 42(3–4), 185 (1985)CrossRefGoogle Scholar
  33. 33.
    G. Byrne, A. Hindmarsh, Int. J. High Perform. Comput. Appl. 13, 354 (1999)CrossRefGoogle Scholar
  34. 34.
    S. Orszag, M. Israeli, M. Deville, J. Sci. Comp. 1, 75 (1986)CrossRefGoogle Scholar
  35. 35.
    J. Donea, A. Huerta, J.P. Ponthot, A. Rodriguez-Ferran, Encyclopedia of computational mechanics DOI: 10.1002/0470091355.ecm009, 1:14 (2004)Google Scholar
  36. 36.
    P. Fischer, N. Miller, H. Tufo, in Parallel Solution of Partial Differential Equations, ed. by P. Bjørstad, M. Luskin (Springer, Berlin, 2000), pp. 158–180Google Scholar
  37. 37.
    S. Orszag, J. Comput. Phys. 37, 70 (1980)MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Fischer, Spectral element solution of the navier-stokes equations on high performance distributed-memory parallel processors. Ph.D. thesis, Massachusetts Institute of Technology (1989). Cambridge, MA.Google Scholar
  39. 39.
    D. Giannakis, P. Fischer, R. Rosner, J. Comput. Phys. 228, 1188 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Masud, T.J.R. Hughes, Comput. Methods Appl. Mech. Engrg. 146, 91 (1997)MathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Kanchi, A. Masud, Int. J. Numer. Methods Fluids 54, 923 (2007)CrossRefGoogle Scholar
  42. 42.
    P. Fischer, Comput. Methods Appl. Mech. Engrg. 163, 193 (1998)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Hron, S. Turek, A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics, Lecture Notes in Computational Science and Engineering, vol. 53 (Springer, 2010)Google Scholar
  44. 44.
    J.F. Gerbeau, F. Nobile, P. Causin, Comput. Methods Appl. Mech. Engrg. 194, 4506 (2005)MathSciNetCrossRefGoogle Scholar
  45. 45.
    M. Fernandez, J. Gerbeau, C. Grandmont, Comptes rendus de l’Académie des sciences, Série I- Analyse numérique 342, 279 (2006)Google Scholar
  46. 46.
    C. Farhat, A. Rallu, K. Wang, T. Belytschko, Int. J. Numer. Methods Eng. 84, 73 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Banks, W.D. Henshaw, B. Sjögreen, J. Comput. Phys. 231(17), 5854 (2013)CrossRefGoogle Scholar
  48. 48.
    J. Banks, W.D. Henshaw, D.W. Schwendeman, J. Comput. Phys. 269, 108 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Banks, W.D. Henshaw, D.W. Schwendeman, J. Comput. Phys. 268, 399 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Fernández, M. Landajuela, M. Vidrascu, J. Comput. Phys. 297, 156 (2015)MathSciNetCrossRefGoogle Scholar
  51. 51.
    P. Bearman, J. Fluids and Structures 27, 648 (2010)CrossRefGoogle Scholar
  52. 52.
    R. Tumkur, R. Calderer, A. Masud, A. Pearlstein, L. Bergman, A. Vakakis, J. Fluids and Structures 40, 214 (2013)CrossRefGoogle Scholar
  53. 53.
    P. Fischer, in 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation (AIAA 2015-3049, 2015)Google Scholar
  54. 54.
    O. Walsh, in The NSE II-Theory and Numerical Methods, ed. by J. Heywood, K. Masuda, R. Rautmann, V. Solonikkov (Springer, 1992), pp. 306–309Google Scholar
  55. 55.
    T. Bjontegaard, E.M. Rønquist, Comput. Methods Appl. Mech Engng. 197(51), 4763–4773 (2008)CrossRefGoogle Scholar
  56. 56.
    Kee, R.J., F.M. Rupley, J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. DixonLewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang,, O. Adigun, CHEMKIN collection, Release 3.6. Tech. rep., Reaction Design, Inc., San Diego, CA (2000)Google Scholar
  57. 57.
    T.K. Prasanth, S. Mittal, J. Comput. Phys. 594, 463 (2008)Google Scholar
  58. 58.
    R. Tumkur, P. Fischer, L. Bergman, A. Vakakis, A. Pearlstein, submitted (2015)Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Paul Fischer
    • 1
  • Martin Schmitt
    • 2
    • 3
  • Ananias Tomboulides
    • 4
  1. 1.Argonne National Laboratory and University of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.Bosch GmbHGasoline SystemsSchwieberdingenGermany
  4. 4.Argonne National Laboratory and Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations