Abstract
We discuss a new algorithm for finding all elliptic curves over \(\mathbb{Q}\) with a given conductor. Though based on (very) classical ideas, this approach appears to be computationally quite efficient. We provide details of the output from the algorithm in case of conductor p or p 2, for p prime, with comparisons to existing data.
The authors were supported in part by grants from NSERC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Using the standard unix sort command and taking advantage of multiple cores.
References
M. K. Agrawal, J. H. Coates, D. C. Hunt and A. J. van der Poorten, Elliptic curves of conductor 11, Math. Comp. 35 (1980), 991–1002.
K. Belabas. A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), 1213–1237.
K. Belabas and H. Cohen, Binary cubic forms and cubic number fields, Organic Mathematics (Burnaby, BC, 1995), 175–204. CMS Conf. Proc., 20 Amer. Math. Soc. 1997.
M. A Bennett and A. Ghadermarzi, Mordell’s equation: a classical approach, L.M.S. J. Comput. Math. 18 (2015), 633–646.
M. A. Bennett and A. Rechnitzer, Computing elliptic curves over \(\mathbb{Q}\), submitted for publication.
W. E. H. Berwick and G. B. Mathews, On the reduction of arithmetical binary cubic forms which have a negative determinant, Proc. London Math. Soc. (2) 10 (1911), 43–53.
B. J. Birch and W. Kuyk (Eds.), Modular Functions of One Variable IV, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975.
W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235–265. Computational algebra and number theory (London, 1993).
C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the Modularity of Elliptic Curves over \(\mathbb{Q}\) : Wild 3-adic Exercises, J. Amer. Math. Soc. 14 (2001), 843–939.
A. Brumer and O. McGuinness, The behaviour of the Mordell-Weil group of elliptic curves, Bull. Amer. Math. Soc. 23 (1990), 375–382.
A. Brumer and J. H. Silverman, The number of elliptic curves over \(\mathbb{Q}\) with conductorN, Manuscripta Math. 91 (1996), 95–102.
J. Coates, An effectivep-adic analogue of a theorem of Thue. III. The diophantine equationy 2 = x 3 + k, Acta Arith. 16 (1969/1970), 425–435.
F. Coghlan, Elliptic Curves with Conductor 2m3n, Ph.D. thesis, Manchester, England, 1967.
J. Cremona, Elliptic curve tables, http://johncremona.github.io/ecdata/
J. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. Available online at http://homepages.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html
J. Cremona, Reduction of binary cubic and quartic forms, LMS J. Comput. Math. 4 (1999), 64–94.
J. Cremona and M. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math. 16 (2007), 303–312.
H. Davenport, The reduction of a binary cubic form. I., J. London Math. Soc. 20 (1945), 14–22.
H. Davenport, The reduction of a binary cubic form. II., J. London Math. Soc. 20 (1945), 139–147.
H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II., Proc. Roy. Soc. London Ser. A. 322 (1971), 405–420.
B. Edixhoven, A. de Groot and J. Top, Elliptic curves over the rationals with bad reduction at only one prime, Math. Comp. 54 (1990), 413–419.
N. D. Elkies, How many elliptic curves can have the same prime conductor?, http://math.harvard.edu/~elkies/condp_banff.pdf
N. D. Elkies, and M. Watkins, Elliptic curves of large rank and small conductor, Algorithmic number theory, 42–56, Lecture Notes in Comput. Sci., 3076, Springer, Berlin, 2004.
T. Hadano, On the conductor of an elliptic curve with a rational point of order 2, Nagoya Math. J. 53 (1974), 199–210.
B. Haible, CLN, a class library for numbers, available from http://www.ginac.de/CLN/
H. Hasse, Arithmetische Theorie der kubischen Zahlköper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565–582.
C. Hermite, Note sur la réduction des formes homogènes à coefficients entiers et à deux indétermineées, J. reine Angew. Math. 36 (1848), 357–364.
C. Hermite, Sur la réduction des formes cubiques à deux indéxtermineées, C. R. Acad. Sci. Paris 48 (1859), 351–357.
G. Julia, Étude sur les formes binaires non quadratiques à indéterminďes rélles ou complexes, Mem. Acad. Sci. l’Inst. France 55 (1917), 1–293.
J.-F. Mestre and J. Oesterlé. Courbes de Weil semi-stables de discriminant une puissancem-ième, J. reine angew. Math 400 (1989), 173–184.
G. L. Miller, Riemann’s hypothesis and tests for primality in Proceedings of seventh annual ACM symposium on Theory of computing, 234–239 (1975).
L. J. Mordell, The diophantine equationy 2 − k = x 3, Proc. London. Math. Soc. (2) 13 (1913), 60–80.
L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
T. Nagell, Introduction to Number Theory, New York, 1951.
O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten II, Math. Nach. 56 (1973), 269–280.
I. Papadopolous, Sur la classification de Néron des courbes elliptiques en caractéristique résseulé 2 et 3, J. Number Th. 44 (1993), 119–152.
The PARI Group, Bordeaux. PARI/GP version 2.7.1, 2014. available at http://pari.math.u-bordeaux.fr/.
A. Pethő, On the resolution of Thue inequalities, J. Symbolic Computation 4 (1987), 103–109.
A. Pethő, On the representation of 1 by binary cubic forms of positive discriminant, Number Theory, Ulm 1987 (Springer LNM 1380), 185–196.
M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Th. 12 (1980) 128–138.
B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. 10 (1975), 367–378.
I. R. Shafarevich, Algebraic number theory, Proc. Internat. Congr. Mathematicians, Stockholm, Inst. Mittag-Leffler, Djursholm (1962), 163–176.
J. P. Sorenson and J. Webster, Strong Pseudoprimes to Twelve Prime Bases, arXiv preprint arXiv:1509.00864.
V. G. Sprindzuk, Classical Diophantine Equations, Springer-Verlag, Berlin, 1993.
W. Stein and M. Watkins, A database of elliptic curve – first report, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Compute. Sci., vol. 2369, Springer, Berlin, 2002, pp. 267–275.
N. Tzanakis and B. M. M. de Weger, On the practical solutions of the Thue equation, J. Number Theory 31 (1989), 99–132.
N. Tzanakis and B. M. M. de Weger, Solving a specific Thue-Mahler equation, Math. Comp. 57 (1991) 799–815.
N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math., 84 (1992), 223–288.
B. M. M. de Weger, Algorithms for diophantine equations, CWI-Tract No. 65, Centre for Mathematics and Computer Science, Amsterdam, 1989.
B. M. M. de Weger, The weighted sum of twoS-units being a square, Indag. Mathem. 1 (1990), 243–262.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this chapter
Cite this chapter
Bennett, M.A., Rechnitzer, A. (2017). Computing Elliptic Curves over \(\mathbb{Q}\): Bad Reduction at One Prime. In: Melnik, R., Makarov, R., Belair, J. (eds) Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. Fields Institute Communications, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6969-2_13
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6969-2_13
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-6968-5
Online ISBN: 978-1-4939-6969-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)