Modern Challenges and Interdisciplinary Interactions via Mathematical, Statistical, and Computational Models

  • Roderick MelnikEmail author
  • Roman Makarov
  • Jacques Belair
Part of the Fields Institute Communications book series (FIC, volume 79)


We live in an incredible age. Due to extraordinary advances in sciences and engineering, we better understand the world around us. At the same time, we witness profound changes in the technology, environment, societal organization, and economic well-being. We face new challenges never experienced by humans before. To efficiently address these challenges, the role of interdisciplinary interactions will continue to increase, as well as the role of mathematical, statistical, and computational models, providing a central link for such interactions.


  1. 1.
    Asher, U. M., Surprising Computations, Applied Numerical Mathematics, 62 (10), SI, 1276-1288, 2012.Google Scholar
  2. 2.
    Bibbona, E., Sacerdote, L., and Torre, E., A Copula-Based Method to Build Diffusion Models with Prescribed Marginal and Serial Dependence, Methodology and Computing in Applied Probability, 18 (3), 765-783, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blanes, S. and Casas, F., A Concise Introduction to Geometric Numerical Integration, Taylor and Francis, CRC Press, 2016.CrossRefzbMATHGoogle Scholar
  4. 4.
    Budd, C. J. and Piggott, M. D., The geometric integration of scale-invariant ordinary and partial differential equations, Journal of Computational and Applied Mathematics, Vol. 128, Issues 1–2, 399–422, 2001.zbMATHGoogle Scholar
  5. 5.
    Clerc, M. G., Coulibaly, S., Ferre, M. A., Garcia-Nustes, M. A., and Rojas, R. G., Chimera-type states induced by local coupling, Phys. Rev. E, 93 (5), 052204, 2016.CrossRefGoogle Scholar
  6. 6.
    Dhote, R. P., Gomez, H., Melnik, R. V. N., and Zu, J., 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis, Computers and Structures, 154, 48—58, 2015.CrossRefGoogle Scholar
  7. 7.
    Elliott, J. A., Novel approaches to multiscale modelling in materials science, International Materials Reviews, 56 (4), 207—225, 2011.CrossRefGoogle Scholar
  8. 8.
    Enge, A., Elliptic Curves and Their Applications to Cryptography: An Introduction, Springer, 1999.Google Scholar
  9. 9.
    Fluid Structure Interaction and Moving Boundary Problems IV, Chakrabarti, S. K. and Brebbia, C. A. (Eds.), WIT, 2007.Google Scholar
  10. 10.
    Ganusov, V. V., Strong Interference in Mathematical Modeling: a Method for Robust Science in the Twenty-First Century, Frontiers in Microbiology, 7, 1131, 2016.CrossRefGoogle Scholar
  11. 11.
    Geometric Numerical Integration of Differential Equations, R. Quispel and R. McLachlan (Guest Editors), Journal of Physics A: Mathematical and General, Special Issue, 39 (19), pp. 5251–5652, 2006.Google Scholar
  12. 12.
    Hitchin, N., Interaction between mathematics and physics, ARBOR Ciencia, Pensamiento y Cultura CLXXXIII, 725, 427-432, 2007.Google Scholar
  13. 13.
    Hunter, P., Biology is the new physics, EMBO Rep., 11 (5), 350—352, 2010.CrossRefGoogle Scholar
  14. 14.
    Ibragimov, N. H., Integration of dynamical systems admitting nonlinear superposition, J. Coupled Syst. Multiscale Dyn. 4, 91–106, 2016.CrossRefGoogle Scholar
  15. 15.
    Ingalls, B. P., Mathematical Modeling in Systems Biology. An Introduction, The MIT Press, 2013.zbMATHGoogle Scholar
  16. 16.
    Kent, J., Jablonowski, C., Thuburn, J., and Wood N., An energy-conserving restoration scheme for the shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 142 (695), 1100—1110., Part B, 2016.Google Scholar
  17. 17.
    Kraus, M., & Maj, O., Variational integrators for nonvariational partial differential equations, Physica D: Nonlinear Phenomena, 310, 37-71, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Le Novère, N., Quantitative and logic modelling of molecular and gene networks, Nature Reviews Genetics, 16, 146–158, 2015.CrossRefGoogle Scholar
  19. 19.
    Mackey, M. C. and Santillán, M., Mathematics, Biology, and Physics: Interactions and Interdependence, Notices of the AMS, 52 (8), 832—840, 2005.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Marsden, J. E., Patrick, G. W., Shkoller, S., Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs, Commun. Math. Phys., 199, 351 – 395, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mclachlan, R. I. and Wilkins, M. C., The Multisymplectic Diamond Scheme, SIAM Journal on Scientific Computing, 37 (1), A369-A390, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Multiscale Paradigms in Integrated Computational Materials Science and Engineering Materials Theory, Modeling, and Simulation for Predictive Design Introduction, Deymier, P. A., Runge, K., and Muralidharan, K. (Eds.), Springer, 2016.Google Scholar
  23. 23.
    Nonlinear Wave Equations: Analytic and Computational Techniques, Curtis, C., Dzhamay, A., Hereman, W. A., Prinari, B. (Eds.), Contemporary Mathematics, Vol. 635, 2015.Google Scholar
  24. 24.
    Scheffran, J., The dynamic interaction between economy and ecology: Cooperation, stability and sustainability for a dynamic-game model of resource conflicts, Mathematics and Computers in Simulation, 53 (4-6), 371—380, 2000.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tadmor, E., Review of Numerical Methods for Nonlinear Partial Differential Equations, Bulletin of the American Mathematical Society, 49 (4), 507—554, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tao, M., Explicit symplectic approximation of nonseparable Hamiltonians: algorithm and long time performance, Phys. Rev. E, Vol. 94, Issue 4, Article Number 043303, 2016.Google Scholar
  27. 27.
    Torres, O. P. and Granados, M. A., Exact traveling wave solutions in the coupled plane-base rotator model of DNA, International Journal of Non-Linear Mechanics, 86, 8—14, 2016.CrossRefGoogle Scholar
  28. 28.
    Valsson, O., Tiwary, P., and Parrinello, M., Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint, in Book Series: Annual Review of Physical Chemistry, Johnson, M. A. and Martinez, T. J. (Eds.), Annual Review of Physical Chemistry, Vol. 67, pp. 159-184, 2016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Roderick Melnik
    • 1
    Email author
  • Roman Makarov
    • 1
  • Jacques Belair
    • 2
  1. 1.Department of Mathematics and MS2Discovery Interdisciplinary Research InstituteWilfrid Laurier UniversityWaterlooCanada
  2. 2.Departement de MathematiquesUniversite de MontrealMontrealCanada

Personalised recommendations