Skip to main content

Modern Challenges and Interdisciplinary Interactions via Mathematical, Statistical, and Computational Models

  • Chapter
  • First Online:
Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science

Part of the book series: Fields Institute Communications ((FIC,volume 79))

  • 797 Accesses

Abstract

We live in an incredible age. Due to extraordinary advances in sciences and engineering, we better understand the world around us. At the same time, we witness profound changes in the technology, environment, societal organization, and economic well-being. We face new challenges never experienced by humans before. To efficiently address these challenges, the role of interdisciplinary interactions will continue to increase, as well as the role of mathematical, statistical, and computational models, providing a central link for such interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asher, U. M., Surprising Computations, Applied Numerical Mathematics, 62 (10), SI, 1276-1288, 2012.

    Google Scholar 

  2. Bibbona, E., Sacerdote, L., and Torre, E., A Copula-Based Method to Build Diffusion Models with Prescribed Marginal and Serial Dependence, Methodology and Computing in Applied Probability, 18 (3), 765-783, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanes, S. and Casas, F., A Concise Introduction to Geometric Numerical Integration, Taylor and Francis, CRC Press, 2016.

    Book  MATH  Google Scholar 

  4. Budd, C. J. and Piggott, M. D., The geometric integration of scale-invariant ordinary and partial differential equations, Journal of Computational and Applied Mathematics, Vol. 128, Issues 1–2, 399–422, 2001.

    MATH  Google Scholar 

  5. Clerc, M. G., Coulibaly, S., Ferre, M. A., Garcia-Nustes, M. A., and Rojas, R. G., Chimera-type states induced by local coupling, Phys. Rev. E, 93 (5), 052204, 2016.

    Article  Google Scholar 

  6. Dhote, R. P., Gomez, H., Melnik, R. V. N., and Zu, J., 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis, Computers and Structures, 154, 48—58, 2015.

    Article  Google Scholar 

  7. Elliott, J. A., Novel approaches to multiscale modelling in materials science, International Materials Reviews, 56 (4), 207—225, 2011.

    Article  Google Scholar 

  8. Enge, A., Elliptic Curves and Their Applications to Cryptography: An Introduction, Springer, 1999.

    Google Scholar 

  9. Fluid Structure Interaction and Moving Boundary Problems IV, Chakrabarti, S. K. and Brebbia, C. A. (Eds.), WIT, 2007.

    Google Scholar 

  10. Ganusov, V. V., Strong Interference in Mathematical Modeling: a Method for Robust Science in the Twenty-First Century, Frontiers in Microbiology, 7, 1131, 2016.

    Article  Google Scholar 

  11. Geometric Numerical Integration of Differential Equations, R. Quispel and R. McLachlan (Guest Editors), Journal of Physics A: Mathematical and General, Special Issue, 39 (19), pp. 5251–5652, 2006.

    Google Scholar 

  12. Hitchin, N., Interaction between mathematics and physics, ARBOR Ciencia, Pensamiento y Cultura CLXXXIII, 725, 427-432, 2007.

    Google Scholar 

  13. Hunter, P., Biology is the new physics, EMBO Rep., 11 (5), 350—352, 2010.

    Article  Google Scholar 

  14. Ibragimov, N. H., Integration of dynamical systems admitting nonlinear superposition, J. Coupled Syst. Multiscale Dyn. 4, 91–106, 2016.

    Article  Google Scholar 

  15. Ingalls, B. P., Mathematical Modeling in Systems Biology. An Introduction, The MIT Press, 2013.

    MATH  Google Scholar 

  16. Kent, J., Jablonowski, C., Thuburn, J., and Wood N., An energy-conserving restoration scheme for the shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 142 (695), 1100—1110., Part B, 2016.

    Google Scholar 

  17. Kraus, M., & Maj, O., Variational integrators for nonvariational partial differential equations, Physica D: Nonlinear Phenomena, 310, 37-71, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Novère, N., Quantitative and logic modelling of molecular and gene networks, Nature Reviews Genetics, 16, 146–158, 2015.

    Article  Google Scholar 

  19. Mackey, M. C. and Santillán, M., Mathematics, Biology, and Physics: Interactions and Interdependence, Notices of the AMS, 52 (8), 832—840, 2005.

    MathSciNet  MATH  Google Scholar 

  20. Marsden, J. E., Patrick, G. W., Shkoller, S., Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs, Commun. Math. Phys., 199, 351 – 395, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mclachlan, R. I. and Wilkins, M. C., The Multisymplectic Diamond Scheme, SIAM Journal on Scientific Computing, 37 (1), A369-A390, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  22. Multiscale Paradigms in Integrated Computational Materials Science and Engineering Materials Theory, Modeling, and Simulation for Predictive Design Introduction, Deymier, P. A., Runge, K., and Muralidharan, K. (Eds.), Springer, 2016.

    Google Scholar 

  23. Nonlinear Wave Equations: Analytic and Computational Techniques, Curtis, C., Dzhamay, A., Hereman, W. A., Prinari, B. (Eds.), Contemporary Mathematics, Vol. 635, 2015.

    Google Scholar 

  24. Scheffran, J., The dynamic interaction between economy and ecology: Cooperation, stability and sustainability for a dynamic-game model of resource conflicts, Mathematics and Computers in Simulation, 53 (4-6), 371—380, 2000.

    Article  MathSciNet  Google Scholar 

  25. Tadmor, E., Review of Numerical Methods for Nonlinear Partial Differential Equations, Bulletin of the American Mathematical Society, 49 (4), 507—554, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao, M., Explicit symplectic approximation of nonseparable Hamiltonians: algorithm and long time performance, Phys. Rev. E, Vol. 94, Issue 4, Article Number 043303, 2016.

    Google Scholar 

  27. Torres, O. P. and Granados, M. A., Exact traveling wave solutions in the coupled plane-base rotator model of DNA, International Journal of Non-Linear Mechanics, 86, 8—14, 2016.

    Article  Google Scholar 

  28. Valsson, O., Tiwary, P., and Parrinello, M., Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint, in Book Series: Annual Review of Physical Chemistry, Johnson, M. A. and Martinez, T. J. (Eds.), Annual Review of Physical Chemistry, Vol. 67, pp. 159-184, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Melnik, R., Makarov, R., Belair, J. (2017). Modern Challenges and Interdisciplinary Interactions via Mathematical, Statistical, and Computational Models. In: Melnik, R., Makarov, R., Belair, J. (eds) Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. Fields Institute Communications, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6969-2_1

Download citation

Publish with us

Policies and ethics