Asymptotic Freeness of Gaussian Random Matrices

Part of the Fields Institute Monographs book series (FIM, volume 35)


In this chapter we shall introduce a principal object of study: Gaussian random matrices. This is one of the few ensembles of random matrices for which one can do explicit calculations of the eigenvalue distribution. For this reason the Gaussian ensemble is one of the best understood. Information about the distribution of the eigenvalues is carried by it moments: {E(tr(X k ))} k where E is the expectation, tr denotes the normalized trace (i.e. tr(I N ) = 1), and X is an N × N random matrix.


  1. 2.
    G. Akemann, J. Baik, P. Di Francesco, The Oxford Handbook of Random Matrix Theory (Oxford University Press, Oxford, 2011)zbMATHGoogle Scholar
  2. 7.
    G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118 (Cambridge University Press, Cambridge, 2010)Google Scholar
  3. 45.
    E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, Planar diagrams. Commun. Math. Phys. 59(1), 35–51 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 61.
    R. Cori, Un code pour les graphes planaires et ses applications (Société Mathématique de France, Paris, 1975). With an English abstract, Astérisque, No. 27Google Scholar
  5. 69.
    A. Edelman, N. Raj Rao, Random matrix theory. Acta Numer. 14, 233–297 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 91.
    J. Harer, D. Zagier, The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 101.
    L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1/2), 134–139 (1918)CrossRefGoogle Scholar
  8. 119.
    E. Lukacs, Characteristic Functions. Griffin’s Statistical Monographs & Courses, vol. 5 (Hafner Publishing Co., New York, 1960)Google Scholar
  9. 137.
    A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335 (Cambridge University Press, Cambridge, 2006)Google Scholar
  10. 167.
    R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge University Press, Cambridge, 1997)CrossRefzbMATHGoogle Scholar
  11. 171.
    T. Tao, Topics in Random Matrix Theory, vol. 132 (American Mathematical Society Providence, RI, 2012)zbMATHGoogle Scholar
  12. 172.
    G. ’t Hooft, A planar diagram theory for strong interactions. Nuclear Phys. B 72, 461–473 (1974)Google Scholar
  13. 200.
    G.-C. Wick, The evaluation of the collision matrix. Phys. Rev. 80(2), 268 (1950)Google Scholar
  14. 201.
    E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. (2) 62, 548–564 (1955)Google Scholar
  15. 207.
    A. Zvonkin, Matrix integrals and map enumeration: an accessible introduction. Math. Comput. Modell. 26(8), 281–304 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada
  2. 2.FB MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations